Trends in Parallel Systems

In the earlier chapters of this book, we have studied the many architectural concepts which had been
proposed and tried out until the early 1990s. In Chapter 12, we studied in some detail the basic issues
related to instruction level parallel:sm {ILP), and the various techniques which have been developed to
exploit ILP in the running program.

We shall now use that knowledge as a foundation to understand subsequent developments in computer
architecture, in the light of the technological advances which have taken place over the last two decades.
Of course this fairly brief chapter about the recent advances cannot possibly be exhaustive—but we do
hope that it is representative enough to bring out the recent trends in computer architecture.

Over the last two decades, the hardware technologies that provide the building blocks of computer
architecture have advanced almost beyond recognition. in Section 13.1, we shall take a brief look at these
developments in technology, so as to understand the driving forces behind the recent developments
in computer architecture. We feel that the recent innovations and advances in computer architecture
cannot be studied in isolation of these technological factors. '

In Section 13.2, we review in brief the types of parallelism which may be present in a program, and
discuss the concept of efficient and work-¢fficient parallel algorithms. The concept of work-efficiency
enables us to determine whether a given parallel algorithm has efficiency which is comparable to that
of another known algorithm for the same problem.We aiso introduce the concept of stream processing,
which can provide very high performance for certain specialized data-parallel applications.

In Section 13.3, we take a look at case studies of some recently introduced commercial processors
and systems, which incorporate innovative designs based on the latest advances in technology and
architectural concepts. In Section 13.4, we discuss current trends in parallel program development
languages and techniques.

 BRIEF OVERVIEW OF TECHNOLOGY

In electronics, VLSI, mass storage, and communication technologies, tremendous advances
have taken place over the last two decades, which have shaped the resulting advances in
processor and system architecture. In this section. we take a brief overview of these basic technological
advances, so as to prepare the ground for case studies of some of the recently announced processors and
systems. In sub-sections 13.1.1 through 13.1.4, respectively, we discuss semiconductor technology, display
technology, storage technology, and interconnect and network technology.
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13.1.1 Semiconductor Technology

Over the last several decades, steady advances in very large scale integration (VLS]) technology have led
to a steady exponential-rate growth in the number of transistors which can be fabricated on a single chip.
Present day technology allows well over a billion transistors to be fabricated on a single chip. Advances in
VLSI technology have had a major impact on computer system architecture, giving rise to possibilities such
as multi-core chips and system-on-a-chip.

The basic parameter which determines the size of a transistor on a chip is the minimum line width supported
by the fabrication technology—i.e. the width of the smallest feature which can be fabricated on the chip.

With better and better processing technoelogy, line widths producible using VLSI fabrication technology
have been shrinking steadily. Sub-micron technologies became possible by the early 1990s, i.e. line widths
of under a micron, which is 1000 nanometers (nm). Less than two decades later, we now have line widths
of 65 nm, 45 nm, and even 32 nm, enabling the production of chips with over a billion transistors on them.

Gordon Mcore was one of the founders of Intel Corporation, which is today the world leader in
semiconductor technology and the largest manufacturer of semiconductor devices. Based on his intimate
knowledge of VLSI design and fabrication technologies, Moore formulated an empirical law in the mid-
1980s which states that: The number of transistors which can be fabricated on a single chip doubles every
two years.

One way to understand the logic behind Moore’s law is as follows:

(i) When a company embarks on developing ‘the next generation’ of chip technology, it typically aims
for doubling of the device density on the chip. Since the area occupied by a device on the chip is
proportional to the square of line width, the design target for the line width must be about 142 of the
line width currently achieved. This approximate ratio explains the line widths of 90 nm, 65 nm, 45 nm
etc. of current technologies.

(ii) The time period mentioned in Moore’s law—two years—equals roughly the design and development
cycle associated with the newer fabrication technology needed.

Faster clocks also become possible with improved technology; however, beyond a point, the power
consumption of the chip rises disproportionately fast with clock speeds. Also, a faster processor clock requires
an increased number of stages in processor pipelines. But there is a limit beyond which the number of such
stages cannot be increased, because each additional pipeline stage introduces its own overhead.

In recent years, processor clock speeds have reached as much as 4 gigahertz, but it is seen that processor
performance does not scale with clock speeds. One reason behind this is that the relative cost of a cache miss
is greater at higher processor speeds.

In view of factors such as these, there has been a relative leveling off in processor clock speeds in recent
years, while greater attention is given to how best to design the chip to utilize the enormous number of
transistors on it. Apart from the exploitation of ILP discussed in Chapter 12, multi-core processors, systems-
on-a-chip, stream processors, and larger two-level on-chip cache memories are other examples of resulting
architectural developments.
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An important consequence of high density chip designs and faster processor clocks is the following:

Off-chip interconnect delays play a major role in determining system performance. The approximate speed
of an electronic signal over a wire in a computer system is 20 centimeters (cm) per nanosecond. If an off-chip
connection has a length of 10 cm, for example, the associated delay is 0.5 ns, which is as much as half of a
clock cycle of a 1 gigahertz clock, or one full cycle of a 2 gigahertz clock.

Given that a large number of transistors can be fabricated on a chip, it follows that huge performance
benefits can be derived by integrating system functions on a chip, even if it is not possible to continue to
push clock speeds higher. Another outcome of these technological factors is that system performance is more
easily enhanced by employing multiple processors, than by pushing a single processor to its technological
performance limits.

In the case studies which we shall consider later in this chapter, we shall see how different manufacturers
have designed innovative high performance systems, keeping in mind the basic constraints of the underlying
technology. We shall also see that today the most powerful computer systems in the world—such as Cray XT
and [BM Blue Gene!'l—are based on the concept of massively parallel processing.

Another important effect of modern VLSI technology on computer architecture ensues from the economics
of chip design.

Design costs associated with modern high performance processors are very high, which means that larger
production quantities are needed to justify these costs, Therefore computer system architects today are more
likely to make use of commercially available processors which are in volume production—i.e. commodity
processars—while relying on innovations in system design to deliver higher performance. In fact massively
parallel systems have been developed precisely to exploit the enormous amount of aggregate processing
power which can be provided through the use of a large number of high-performance commodity processors
operating in parallel.

In the case studies presented in Section 13.3, we shall see that advances in VLSI technology—which have
been touched upon very briefly here—have had a major impact not only on processor designs but also on
overall system architecture.

Semiconductor Memories Dynamic random access memory (DRAM), which provides the bulk of main
memory in computer systems today, is also subject to Moore’s law, i.e. doubling of transistor count on a
single chip every two years. This means that a single memory chip today can store hundreds of megabytes of
memory, and computer systems today are provided with main memories which are three orders of magnitude
larger than in the early 1990s.

However, over the years, memory speed increases have not kept up with processor speed increases.
Processor speeds have been increasing at a rate of over 50% per year, whereas memory speeds have been
increasing at a rate of less than 10% per year.

Typical processor clock periods in the early 1990s were of the order of 25 nanoseconds, and memory cycle
times of the order of 200 nanoseconds. Today these two numbers would be of the order of 1 nanosecond
and 50 nanoseconds, respectively, which shows that, relative to processor speeds, main memory speeds are
slower today. In such a system—unless something is done about it—the processor would see fifty idle clock
cycles for every memory access on a cache miss, which is clearly not acceptable.

[T AH the product numbers and names used in this chapter are registered trademarks of the respective corporations named.
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This means that the cost of a cache miss, counted in terms of number of processor cycles lost, is greater
today than it was in the early 1990s. To put in another way, cache miss rate would have greater impact on
processor throughput today than it did earlier.

In terms of computer system performance, this means that designers today have to rely on more innovative
memory latency hiding techniques. We have already seen that multi-level caches, out-of-order instruction
execution, and hardware multi-threading are some of the latency hiding techniques available to the system
designer.

Even with various latency-hiding techniques, the memory sub-system must be capable of storing and
delivering data at the required rates. Double data rate (DDR) devices, wider data paths, interleaving, and
integrated L3 cache are some of the techniques employed for this purpose. High performance systems also
employ memories with error correcting codes (ECC) to protect against randorm, one-off errors.

13.1.2 Display Technology

Graphics display technology has made huge strides since the mid-1990s—when LCD displays were virtually
unknown, and high resolution CRT displays were only available on expensive workstations. In terms of each
of the foliowing performance features, graphics displays have made huge advances over the last couple of
decades:

+ pixel density,

= range of colors,

* contrast,

« refresh rate, and

» viewing angle (applicable 1o LCL) displays).

With the help of specialized graphics controllers and high data rate interconnects, modern systems support
animated graphics of amazing quality.

These developments have opened up the vast and entirely new area of multimedia applications, ncluding
animated graphics and sophisticated gaming —applications which were not possible a couple of decades
carlier. Sophisticated image processing is also now made possible by utilizing the same processing and
display capabilities.

At the same time, graphical interfaces have changed the ways in which users interact with the application
programs. Compared to the earlier days of DOS and UNIX command lines, user interaction with the computer
has been transformed with the help of windows, pointing devices and imaginative graphics.

Graphics controllers implement functions of the graphics rendering pipelines. which require repeated
computations on sequences of integer or floating point operands. These numerical operands represent the 2D
or 3D image which is being displayed, and the numerical operations carried out on them represent commeon
graphics operations such as projection, clipping, scaling, rotation, and so on.

Computer graphics and image processing are highly specialized subjects, and it is not possible to delve
into these subjects at this stage. But the processing and data transfer requirements of dynamic graphics do
have a bearing on computer architecture, as the following example will illustrate.
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Consider a display of 1000 x 1200 pixels, with 24 bits of color information per pixel, i.e. 8 bits for each of the
three primary colors; assume that the display has to be refreshed 60 times per second for animated graphics.
Then the aggregate data transfer requirements to the display can be calculated as:

1000 x 1200 x 24 x 60 bits/second = 216 MB/s.

Example 13.1 Graphics display: processing requirements

In a graphics system, all the subsystems—main memory, processor, graphics processor, as well as all the
data paths —must support the required data rates.

For each pixel, display intensities of the three colors must be calculated. Let us assume this requires a
hundred arithmetic operations per second on average, which may be integer or floating point operations,
depending on system design. This figure is used here for an order-of-magnitude calculation; a more precise
calculation requires details of the rendering process, and there would be potential parallelism in these
operations.

Then the graphics processing power needed in this system is of the order of:

1060 x 1200 x 100 operations/second = 120 million operations per second.

Note that this processing power must in general be provided using the appropriate hardware technology,
e.g. a pipelined graphics processing unit (GPLU).

In a graphics or image processing system, all praphics data points are put through essentially the same
sequence of arithmetic operations. Because of this, graphics processing has given rise to variants of SIMD
architecture.

One such variant is today provided even on PCs of modest cost in the form of streaming SIMD extension
to the Intel x86 instruction set (SSE, see Section 13.3.5). As another example of the impact of graphics
and image processing on system architecture, we shall study the concept of stream processing (see
Section 13.2.4).

Requirements of graphics processing have a major impact on the rest of the system design also, in terms of
the storage, processing, networking, and 1/O capability required. Multimedia tratfic forms a major component
of all Internet traffic, while the design of sophisticated video game consoles must also take into account the
aggregate graphics processing requirements.

13.1.3 Storage Technology

Since the early 1990s, mass storage technology has witnessed technology innovations resulting in steady
advances in the following respects:

+ greater storage densities,

+ smaller form factors, ;
= lower power consumption, and

* reduced costs.
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Another significant technology innovation has been the development of flash memories, which are non-
volatile solid state mass-storage devices.

As in the case of semiconductor devices, magnetic disks have also benefited from steady improvements
in materials, processing and manufacturing technology. In addition, there have been breakthroughs—such
as the use of giant magneto-resistive (GMR) effect, which has helped shrink the size of the read/write heads.
Today, magnetic disk drives are available in 3.5” form factor with capacity 1 TB (1 Terabyte, i.e. 10° MB).

In addition, storage systems such as redundant array of independent disks (RAID) have been developed
to make available on computer systems huge amounts of online disk storage, wherein a large number of
physical drives appear as one logical storage unit. In a RAID storage system, the drives built into the array
can provide the advantages of faster data access, error recovery, and/or fault tolerance.

To the operating system, a RAID storage unit appears exactly as one logical disk. The muitiple physical
disks in a RAID storage system may provide a combination of:

(i) Data striping—i.e. the data to be stored is distributed across multiple disks, so that it can be read or
written in parallel across the disks, resulting in faster performance.
(ii) Data mirroring—-all the data to be stored on one drive may be mirrored on another, so that operations
continue uninterrupted even after a single disk failure.
(ili) Parity—for every m > 2 physical data disks, an extra physical disk may be used to store parity
information calculated for the m data disks; in case of any parity violation detected, the system is in a
position to provide error recovery.

These strategies can be combined. For example, one can have a redundant pair of striped disks, or a striped
pair of redundant disks. Standards have been developed defining the various RAID configurations which are
used to meet specific system objectives.

RAID features can be implemented in hardware, in which case the operating system views a RAID system
just as it views any other disk drive. Alternatively, RAID features can also be implemented in software, in
which case they make up the lower layer of the disk space management software.

However, even in the midst of rapid technological advances, one fact has remained unchanged over
the years: Applications of computer systems invariably grow to stress and stretch the limits of available
technology. We have already seen this to be true in the case of semiconductor and graphics technologies.

In the case of magnetic disk drives, the story is no different. Over the years, the data storage requirements
of applications have grown exponentially. A large component of this storage is today cyberspace—i.e.
millions of gigabytes of information made available to users around the world through the world wide web.
In actual fact this cyber-space resides on thousands of server farms, each of which contains a large number
of disk drives; this data is made available on the web through web servers. :

Magnetic disk storage has traditionally provided far higher storage densities than non-volatile semiconductor
EEPROM? storage. However, in recent years, storage densities of semiconductor flash memories—a form
of EEPROM—have increased significantly, leading to their increased use with compact and mobile devices,
where they offer a better alternative to magnetic disks. Unlike the original EEPROM devices, flash memories
provide access to stored data on a block-wise basis.

Being semiconductor devices, such memories also benefit from the steady technology improvements
summarized in Moore’s law. The availability of high-density non-volatile semiconductor memoties means
that so-called solid state drives are now available, which can be used in place of magnetic disk drives. These

el Electrically erasable programmable read-only memory.
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drives offer the advantages of higher throughput, lower latency, lower energy consumption, robustness and
durability. It is likely that, in the coming years, solid state drives may replace some of the rotating magnetic
disks as secondary storage devices.

13.1.4 Interconnect and Network Technologies

Within a computer system, the processor-memory and inter-processor interconnects, as also the data paths
to network and device controllers, must sustain the data traffic rates needed for a given aggregate system
performance. Latencies associated with the data paths also play a role in determining achievable system
performance.

Modem supercomputers, data centers and server farms rely on high performance and high availability
computing infrastructure in which interconnects play the crucial role. An interconnect within a computer
system may span a single chip, a circuit module (or board), a single rack consisting of many circuit boards,
or multiple racks spanning a distance of a few meters or few tens of meters. Thus an interconnect may be a
nerwork on a chip (NoC), a system area network (SAN), or something intermediate. Beyond the range of a
system area network, a local area network (LAN) or a wide area network (WAN) is needed to interconnect
systems into larger systems.

Within a system, with a larger number of processors being connected, there has been a shift from
performance-limiting shared media interconnects—e.g. shared processor-memory bus—towards packet-
based switched media interconnects, which make use of point-to-point links and routers. Such systems
support higher aggregate bandwidths, and protocols for them are specially designed with low overheads and
latencies.

HyperTransport An example of a high performance interconnect which has been developed to meet such
system requirements is HyperTransport (HT)"'—a point-to-point interconnect technology which is packet-
based, scalable, and has low latency. HT Technology Consortium, consisting of several major hardware
vendors, published the first version of this standard in 2001, while the latest version 3.1 has been published
in 2009,

A useful feature of HT is that the command/address/data path width can be selected by the system designer
to be 2, 4, 8, 16 or 32 bits™*, The latest version of HT supports a maximum clock speed of 3.2 GHz and
aggregate data transfer rates of up to 51.2 GB/s. The HT link can be directly provided on the processor/core,
without requiring a separate interface device. The packet-oriented data transfer protocol is designed for low
overhead and provides fast /O interrupt processing, error retries and virtual channel support.

For achieving the high switching speeds needed, HT relies on the underlying physical layer based on the
Low Voltage Differential Signaling (LVDS) standard®!, which offers advantages of low power consumption,
higher speed, and the immunity to noise and interference which characterizes differential signaling.

Basic circuit theory tells us that a capacitive load can respond instantaneocusly to a step change in current,
but not to a step change in voltage. The effective load in system interconnects—within a chip, or between
chips on a circuit board—is capacitive, and therefore a current-driven signaling scheme can support faster
data rates.

Bl See hitp/iwww. hypertransport.org
U pCI Express also provides a similar design option. See below.
Bl See LVDS Owner s Manual, 4° edition, published by National Semiconductor, 2008.
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Consider the basic circuit shown in Fig. 13.1, in which a digital signal—i.e. a step change in current—is
being communicated by the driver to the receiver. Clearly, the direction of current through the pair of wires
(known as current loop) depends on whether transistors A & D or B & C are tumed on.

“current loop”
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Fig.13.1 Low voltage differential signaling (LVDS)

Across the 100  terminating resistance, the 3.5 mA current source generates a voltage drop AV of
350 mV, given that any common mode voltage gets rejected in the differential arrangement. Data is recovered
at the receiver from the sequence of changes in the polarity of this voltage.

PCI and PCI Express["] Peripheral Component Interconnect (PCI) local bus standard was developed by
Intel in the early 1990s for the relatively higher performance PCs then emerging-—which were using, for
example, Intel’s own Pentium processors. The standard provides for device adaptors as IC chips on the
motherboard, or as add-on cards in sepatate slots.

The original 32-bit version of PCI ran at 33.33 MHz clock speed, to deliver net data transfer rate of 133
MB/s. Later versions of PCl utilized x 2 and x 4 clock frequencies with proportionately faster data rates. The
standard was extended for 3.3 volt operation, in addition to the original 5 volt definition, and a 64 bit version
was also defined. '

The PCI local bus can have a number of devices connected to it which can operate as bus masters. In
case of multiple requests, a bus arbiter grants control to a single master; a pair of request/grant signals are
provided for this purpose. The bus also includes address-cum-data lines and interrupt lines. Data transfer is
carried out via zransactions—in which an address phase is followed by data phase; read or write operations
take place with respect to either memory address space or a separate 1/0 address space.

PCI has proved to be immensely successful, and has been introduced in several variants and form factors.
It continues to be widely used in PCs, even after the enhanced and higher speed PCI Express standard was
introduced in 2004.

PC] Express was introduced as a collaborative effort by Intel and other computer vendors in 2004. In spite
of its similarity of name with PCI, it represents a radically different approach to system interconnects. PCI

] See http.//www,pcisig.com
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Express relies on serial, point-to-point links with message-based protocol implemented at the transaction
layer. As a whele, a PCI Express based interconnect operates a set of independent and parallel point-to-point
links, rather than the shared parallel bus of PCI. High speed graphics 2nd storage devices which cannot use
PCI are candidates for the use of PCI Express.

Over each pair of wires making up a single unidirectional link, current mode signaling is used to achieve
data rate of 250 MB/sec in PCI Express v1.x, 500 MB/sec in v2.x and ! GB/sec in v3.x. A pair of links make
a bidirectional /ane, and multiple (2, 4, 8, 12, 16 or 32) lanes can be configured together to achieve higher
data rates, depending on the data transfer speed requirements of a device. Data carried over multiple lanes is
striped, in the sense that in one transaction successive lanes carry successive bytes of data.

All data and control signals such as interrupts are sent as messages over the lane(s), rather than by using
dedicated signal lines as in earlier systems (including PCI). The message based protocol uses CRC for error
detection, and lower level ACK/NAK packets to signal message receipt or non-receipt {e.g. due to time-
out); flow control for outstanding messages is provided at the transaction layer. Compared to PCI Express,
HyperTransport (discussed above) uses a lighter, lower-latency message protocol.

As important as interconnect technology within a system is the local area and wide area networking
technology which allows computer systems to corumunicate at high rates, even though they may be located
half way around the world.

Today computer systems around the world are networked together in a way that could not even be imagined
in the mid- 1990s. Users have become accustomed to transferring huge amounts of data across the world at the
press of a key, and most commercially important applications of computer systems rely on the availability of
reliable, high bandwidth networks detivering services across much of the world.

When any type of data-—numerical data, text, pictures, sound or video—is transferred between two or
more computer systems, the quality of the underlying computer network is crucial in determining the overall
system performance. Performance of a network link between computers is judged in terms of the bandwidth
available, latency, and error rates. Of course errors can occasionaily occur on links, and for this the network
links provide for some form of error recovery. Performance of a network connecting two end-to-end systems
can also be judged using essentially the same criteria.

Over the last decade. use of optical fiber technology has brought about a revolution in communication
networks spanning the world. Achievable bandwidths have been rising, while costs have been coming down
and the overall network reach has been increasing steadily. This has brought about a revolution in the type
and range of applications which are being deployed and used routinely—applications which did not exist
even a decade ago.

Gigabit Ethernet and Cluster Computing Ethemnet, originally developed by Xerox Corporation, is the
most widely deployed Local Area Network (LAN) around the world. IEEE Ethernet standard covers bottom
Layers 1 and 2 of the seven-layer ISO protocol. The original standard, based on CSMA/CD technology,
provided a speed of 10 Mbps; later Fast Ethernet with 100 Mbps speed became available. All along, Ethernet
has proved to be an inexpensive, reliable, scalable and easily upgradeable LAN technology, leading to its
huge adoption rate for local area networks and campus networks.

As processing power grows in the servers and user computers connected to a LAN, and as applications
such as multimedia applications demand more bandwidth, the total traffic demands made on local area

networks also increase.
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In the late 1990s, IEEE defined the 1000 Mbps Ethernet standard—known as Gigabit Ethernet——first
for fiber optic cables, and later over CAT-5 copper cables. Initially, it was envisaged to be used for network
backbone, in the data center, and amongst the various traffic aggregation points in the network. But today
it can also be provided on a user PC or workstation. The technology is defined by relevant parts of IEEE
Standard 802.3.

The copper cable version of Gigabit Ethernet uses four pairs of standard Cat-5 cables, and explicit flow
control amongst switches and adaptors, rather than CSMA/CD. Copper cables can be used over shorter
distances, up to 100 m. Optical fiber cables can be used for longer distances, up to a few kilometers.

When multimedia applications share the same network as data intensive applications, the issue of network
Quality of Service (QoS)m for each application becomes important; this can be seen from the following

argument:

(i) A streaming video session needs timely delivery of data to avoid jitter, but it can tolerate occasional
data errors.

(ii) On the other hand, for transfer of financial data, for example, absolute integrity is the prime concern,
while some delay in delivery may be acceptable.

Thus different applications make different demands on the network for the required QoS; Gigabit Ethernet
has been defined with the required support for the QoS concepts to be implemented over it. It should also
be noted that, after Gigabit Ethernet, newer 10 Gigabit Ethernet technology has also now become available.

Availability of low-cost personal computers, high speed interconnects (such as InfiniBand and Gigabit
Ethernet), and the use of the robust message-passing model to support concurrent processing have given rise
to the popular and powerful Cluster Computing concept.

A cluster computer offers a low-cost alternative to supercomputers for obtammg higher processing
power by interconnecting a large number of processing nodes. Technically, in terms of Flynn’s original
classification, Cluster Computing must be classified as multiple instruction-stream, multiple data-stream
(MIMD) architecture, since each computer executes its own program. However, for a given application, if the
same program is running over all the computers in the cluster, the processing is in single program, muitiple
data-stream (SPMD) mode.

The basic objective of employing a computing cluster may be high performance, high availability (i.e.
ability to continue operating after a failure), or a combination of the two. High availability is made possible
by providing redundancy in the system.

For example, a two-computer cluster, with both running the same database server, will provide higher
availability than a single computer running the database server. On the other hand, for faster response to
database queries, the database must be partitioned between the two interconnected computers running in
parallel.

Partitioning and redundancy are two independent strategies—either or both may be adopted, depending
on cost-benefit analysis. In the above example, if redundancy and partitioning are both needed, a total of at
least four computers must be clustered.

! For a detailed discussion of this and related concepts, see for example Computer Networks, by Andrew Tanenbaum,
fourth edition, Pearson Education.
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For scientific and engineering applications, clusters of thousands of inexpensive computers have been
built. However, programming them for a range of applications, and achieving peak theoretical performance,
both remain challenges for the designer.

Beyond the cluster, Internet is now a world-wide phenomenon that is changing the world. Web-based
applications, repositories of knowledge, and social networking have resulted in the creation of the vast
cyberspace. With the use of the message-passing model, a network application runs correctly even though
the respective clients and servers may be distributed around the world, although of course the response time
seen by the user is dependent on the quality of the network links being used.

The message-passing model works equally well even amongst the multiple processors making up a single
high performance computing system, being in this sense quite robust with respect to relative processor and
communication speeds. Thus, with high performance interconnect and network technologies, newer models
of parallel and distributed applications have evolved, enabling the enormous range of applications we see
today.

Note 13.1

At this point, it is interesting to take a brief backward look at the kind of systems which were in use
about fifteen years ago. Even this brief backward look makes clear the huge advances which have taken
place in computer technology in the intervening period.

In the mid-1990s, the processors used in popular PCs were Intel 80386, 80486 and compatibles,
running at clock speeds of at most a couple of hundred megahertz. Microsoft Windows 3.1 ran
optionally on top of good old DOS.

The popular word processing software of those days was WordStar, and the commonly used
spreadsheet software was Lotus 123, which had replaced VisiCalc. Microsoft Office was not yet
available. While UNLX was in fairly common use, LINUX had not yet made its appearance.

LCD displays were not yet widely available, and there were no laptop PCs available as products.
Spread of the Internet was very limited, and it was mostly used through UNIX-based programs such as
usenet and fip. The worldwide web was virtually unknown at the time, being in its stage of infancy, and
therefore there were no web-based applications. Object-oriented programming with C++ was slowly
gaining ground, while JAVA had not yet been introduced.

In the mid-1990s, there were no multimedia applications, no easy downloads of music or video files,
and video games were of limited capability. The common local area network was based on 10 Mbps
Ethernet, with Novell Netware!®! providing basic file storage and sharing services over the LAN.

From this brief summary, the amazingly rapid advances in computer technology over the last fifteen
years become quite evident. In Sections 13.1.1 to 13.1.4, we have tried to identify some of the drivers
of these advances.

et

We review in this section the main forms of parallelism which can be provided in a parallel
processing system, relying on a basic division of parallelism between structural parallelism—

51 An eatly product from Novell which was hugely successful in the market. For their more recent products, see http://
www.novell.com.
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i.e. algorithm level parallelism—and instruction level parallelism. This and some related points are discussed
in Section 13.2.1.

The concepts of work, work-efficiency and efficient parallel algorithm are useful in parallel algorithm
analysis and design, as is Brent’s theorem. These ideas are discussed in Section 13.2.3. A simple paraliel
computation is presented earlier, in Section 13.2.2, to provide a basis for the discussion of Section 13.2.3.

Stream processing is a form of parallelism which emerges from a consideration of the type of processing
involved in graphics, image processing, and signal processing. This form of parallel processing, which has
some features in common with both SIMD and data flow models, has been discussed in Section 13.2.4.

13.2.1 Structural Parallelism versus Instruction Level Parallelism

In the previous few sections, we have taken a broad overview of the major advances which have taken
place—over the last couple of decades—in processor. memory, storage, graphics, interconnect and network
technologies. These advances have had a major impact not only on computer system architecture, but also
on the kind of applications that are possible and are being demanded. Conversely, the growth in range of
applications has also had an impact on how computer systems are designed and built.

Tn the study of high performance computer architecture, there is an important difference between
theoretical peak performance of the system and the actual performance achieved in practice. This difference
is often quite significant; for example, the performance achieved in practice, for solving a real-world problem
on a highly parallel system, may be only 15% of the theoretical peak performance of the system.

This kind of a mismatch is not seen in other types of engineering products; for example, if a new model
of a car is designed, and its actual performance in practice is only 25% of theoretical peak performance, the
design will be judged a failure. :

The basic reason for this type of performance mismatch in the case of highly parallel computer systems
is the vast range of applications which are run on the systems. There are many possible application domains
of such systems—such as scientific computations, engineering design and simulations, commercial and web
applications, multimedia, games and virtual reality systems, signal processing, cryptography, and others.

Further, even within a given domain, there is a vast variety in the computational requirements of specific
applications. The hard fact remains that, even for a single application in a given domain, it is a buge technical
challenge to match its computational requirements to system hardware, and thereby achieve application
performance approaching theoretical peak system performance.

In the earlier years of computer systems, the aim was to write programs which were provably correct—
in the sense that they satisfied the specifications and were free from programming errors. For application
programs running on a highly parallel system, we have an additional and important objective—that the
programs make efficient use of all the computational resources available on the system.

In view of these facts, in utilizing high performance computer systems today, the technical challenge is
to design applications with the most appropriate models of parallelism, so as to achieve the best possible
performance. '

The application is the final determinant of system architecture, in the sense that the architecture must
necessarily serve the computing needs of the application. The application justifies the architecture. But, in



Trends in Parallel Systems ..

fact, application requirements grow and evolve faster than system architecture, and therefore the challenge of
matching growing application needs to evolving system architecture seems to be a never-ending one.
A few questions arise naturally in this context:

(1)

(2)

3)

Does the structure of the application have inherent, built-in parallelism in it?

For systems such as a web server or a transaction processing system, a large number of individual
requests are processed almost independently of each other, and therefore parallelism can be exploited
in the form of multi-threading. An independent thread can be created to process each service request or
transaction. To support a large number of threads in parallel, the system must employ a proportionally
larger number of processors, with multi-threading support within each processor.

For data paraliel applications such as graphics rendering, or computation-intensive scientific and
engineering applications, the SIMD or SPMD type model of parallelism may be more natural. Stream
processing, discussed below, is also a variant of this type of parallelism. In some cases, parallelism is
best exploited in the form of vector processing.

For any of such applications, the application designer and programmer(s) must explicitly design
and develop the parallel program, using appropriate features provided in the programming language
and the available function libraries. Such parallelism may be named structural parallelism in the
application, which can only be exploited by the application designer and programmer(s) provided the
system architecture has the necessary support for it.

Advances in paralle] programming language design aim to enhance the power and expressivity
of parallel programming—so as to facilitate the efficient realization of structural parallelism in an
algorithm. The student is referred to Section 13.4.1, which describes the newly introduced parallel
programming language Chapel.

Can the compiler discover all the parallelism latent in the user’s program?
"The compiler cannot discover the structural parallelism in an application, of the type mentioned under
(1) above. But, at the level of a single block of instructions, or across two or more blocks, the compiler
may be able to discover potential parallelism and exploit it if the underlying processor architecture
makes that possible. In addition, by techniques such as vectorizing and loop unfolding, the compiler
may be able to bring out and exploit more of the latent parallelism in a program.

These points have been discussed in earlier chapters. In terms of instruction level parallelism,
compiler-detection has its limitations, as we discussed in Chapter 12.

Can the processor discover all the parallelism latent in the running program?

Clearly the processor cannot discover structural parallelism in a program, because such parailelism is
not evident in the machine language version of the program. However, for exploiting parallelism in a
block of instructions, or across two or more blocks, this would be the alternative to (2) to expleit the
parallelism present in an instruction stream, as we have studied in Chapter 12.

As we have seen above, VLSI technology has provided the system designer with an abundance of
hardware capabtlitics. Moore’s law can be seen as one expression of the steady growth being achieved in
VLSI capabilities, So now the obvious question facing the computer system architect is this:
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For a given range of applications, and given the steady growth in VLSI capabilities, what should be the
trade-off in processor and system design between supporting structural parallelism and instruction level
parallelism?

The same question can also be posed in a slightly different way:

Suppose the designers of a new processor chip know that, with an improved VLSI process, they will
have twice as many transistors in the next version of the chip. The designers must then resolve—at system
level—the trade-offs between multiple cores, on-chip cache, functional units, pipeline stages, and aggressive
exploitation of ILP. Clearly these system level trade-offs cannot be resolved without a clear picture of the
target applications of the processor which is under design.

In recent years, there has been a shift in system design away from instruction level parallelism and
towards support for structural parallelism. The basic driver behind the shift is simple: fo achieve maxinum
performance for a given system cost. Development of multi-core architectures is a clear result of this shift, as
is hardware multi-threading, and the provision of sophisticated, high-speed system interconnects.

Another important benefit of parallel architecture is the potential to provide redundancy to echance the
fault tolerance of a system. For a system which must provide 24 X 7 availability, an important benefit of
having multiple processors, memories, and storage devices is that the system can continue to perform even
in the presence of an occasional failure. As against high performance, this system characteristic is known as
high availability.

As we have seen in earlier chapters, SIMD architecture and vector processing aim to exploit data leve!
parallelism (DLP) in an application. Over the last two decades, processor designers have expiored and
developed every possible technique to exploit instruction level parallelism (ILP) in programs, to the point
where scope for further progress in that direction seems to be limited.

In this scenario, the recent shift towards multi-core chips and hardware multithreading results in two types
of important performance benefits:

(1) Multi-core chips and hardware multithreading can exploit a broader range of structural parallelism in
applications. The processor cores in a multi-core chip operate in a shared memory mode. However,
message-passing, which works independently of physical locations of processes or threads, also
provides a natural software model to exploit the structural parallelism present in an application.

{2) A multi-core system with hardware multithreading also supports the natural parallelism which is
always present between two or more independent programs running on a system. Even two or more
operating systems can share a common hardware platform, in effect providing multiple virtual
computing environments to users. Such virtualization makes it possible for the system to support more
complex and composite workloads, resulting in better system utilization and return on investment.

We shall now take a look at a simple specific parallel computation, and then continue further with the
discussion of parallel algorithms.

13.2.2 A Simple Parallel Computation

To visualize clearly the role of parallel processing in algorithms, we now consider a simple example. The
computation here is a double-integration of a function of two variables over a rectangular region of the X-¥
plane. The double integration is evaluated numerically using a simple parallel algorithm.
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)

A continuous function f(X,¥) of two variables X and ¥ defines a volume in the three-dimensional space
created by the three axes X, ¥ and Z = £X,Y). This volume is determined by the integral:

Example 13.2 Numerical integration over two variables

J' e '[;:ax FXY)dX dY

Ymin
where the appropriate limits on X and ¥ have been taken as .Ymin, Xmax, ¥min and ¥max, respectively.

When such an integral is to be evaluated on a computer, the axes X and Y can be divided into intervals of
length A X and AY, respectively, and the integral is replaced by the following summation:

LTF(X,Y)AX AY

The function f{X,¥) must be evaluated at an appropriate point, for example mid-point, within each area
element of size AX AY. Figure 13.2 illustrates graphically the double integration in question.
The number of intervals along X and ¥ axes is, respectively:

{Xmax -~ Xmin) (¥Ymax - Ymin)
Ny = 20 and Ny = SRR T
X AX and Ny AY

Since the product AXAY is constant, it can be taken out of the summations. Function values f{.X,¥) need to
be evaluated at various points within the grid which is formed on the X-Y plane by sets of orthogonal parallel
lines drawn, respectively, at intervals of AY and AX. These grid lines define strips parallel to X and Y axes,
with Ny strips being parallel to X axis, and Ny strips being parallel to Y axis.

Thus, when represented as a computation, the volume integral reduces to a summation. Since the integral
in question is a double integral over X and Y, the summation is also a double summation, with appropriate
limits,

fXY)

One
volume —
etement”

X
Fig.13.2  Double integration of (X, Y} over rectangular region of X-Y plane
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With a sequential algorithm, the summation requires NNy evaluations of A.X,Y) and the same number of
addition steps, i.e. computation time is proportional to NyNy.
One possible parallelized version of this algorithm is shown below!’):

1. For each of the Nx x Ny area elements, in parallel, calculate the value of the function f{X.Y) at the
mid-point of the area element.

2. For each of Ny rows, in parallel, calculate the summation of fiX,Y) at the Ny points along the row;
denote this summation as the respective row fotal, this is the inner summation.

3. Calculate the sum of Ny row totals found in step 2; this is the outer summation.

4. Multiply the sum of step 3 by AXAY.

Note that Ny x Ny processors are working in paraltlel in step 1. We shall discuss in Example 13.3 below
the number of processors working in parallel in steps 2 and 3.

Note also that step 2 should not start until all processors have completed step 1, and similarly step 3
should not start until all the processors involved have completed step 2. As we have seen catlier, this type of
synchronization between processors—or processes—is known as barrier synchronization.

We know that the addition of N numbers on a single processor takes N-1 addition steps. On multiple
processors operating in parallel, we can perform the same addition of N numbers in a more time-efficient
manner, as the following example illustrates.

b
& : Example 13.3 Addition using parallel processors

Let us consider the addition of N = 8 numbers on 4 processors. Assume that the numbers ay, ay, ..., a; are
distributed on eight processors py, py, .-, P7-

Step 1: Do inparallel: ap+ 84— ag, 8, tas— a3, atagoap a3 tar >y

Note that here, when we say ap + 84 — 8p, what is meant is that the operand a, is made available from
Processor Py to Processor po, using some mechanism of interprocessor communication. Operand a, is already
present in processor py, and therefore the result of addition is also then available in processor pg.

Step 2: Do in parallel: ag + a; — ag, a; + a3 — a;
Step3: agta —a

We see that four additions take place in parallel in step 1, two additions in step 2, and 2 single addition in
step 3. Barrier synchronization is needed between steps.

Sum of the eight numbers is available in a, after rhree time steps, and the degree of parallelism is 4, since
that is the maximum number of parallel operations we carried out, which was in step 1. Let us assume that, in
general, N = 2¥ for some integer k, i.e. N is a power of 2. The student can easily verify that:

%1 The parallel algorithm is shown here only as an illustration. Better discussion of paralle] algorithms can be found in
relevant books; see, for example Fundamentals of Sequential and Paraliel Algorithms by Kenncth Berman and Jerome
Paul.
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(1) In the above example, at the end of three time steps, variable a, in processor p, does indeed have the
sum of the eight operands originally given to us.

(i) In general, for N = 2* values to be added, the number of time steps required will be k = log, V.

ao a4 82 33 34 as 36 ay

! |

Step 1
ap ay a ag
T Step 2
ao 81

{ I Step 3

Fig. 13.3 interprocessor communication in the three steps of the algorithm of Bxample 13.2, with N =8

Figure 13.3 illustrates the pattemn of communication between processors in the three steps of the above
algorithm. Note also that this type of parallelism can be applied to any associative operation over N operands.
For example, in the same way as addition was performed above, we could perform the max operation to find
the largest of A operands, or multiplication to find their product.

To apply the basic concept of Example 13.3 to the double integration discussed in Example 13.2, let us
assume for simplicity that we have a square grid over which the doubie integration is o be performed, i.e.
Ny = Ny = N. Then, for the steps of the parallel algorithm of Example 13.2, we can conclude that:

Function Evalugtion: For the evaluation of f{X.Y) at each grid element, we use N processors, and the time
taken is independent of N,

Row Totals:  'With N/2 processors used for each row, the N row totals can be calculated in parallel in log;NV
time steps.

Final Sum;  The final sum is calculated using N/2 processors in log; N time steps.

Thus we see that, overall, with & processors, the computation of double integration is performed in time
O(logs/). In the next section, we shall discuss the issue of whether the parallel algorithm can be considered
optimal with respect to the corresponding sequential algorithm for the same computation.

Figure 13.4 presents another depiction of the inter-processor communication of Example 13.3. We see that
communication occurs in the pattern of a binary tree, with the addition—or any other associative operation—
taking place at every internal node.
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g
Step 3
8 a4
/ \ \ Step 2
3o a; a 43
\ Step 1
ap a4 ap 3 ay ag a3 a7

Fig.13.4 Another depiction of the interprocessor communication. in the three steps of the algorithm of
Example 13.3,with N= 8

When such an operation is carried out on a multiprocessor system, it is known as a reduce or reduction
operation. It involves addition in the above case, but the concept is more general, because any associative
operation may be used as a basis for reduction.

13.2.3 Parallel Algorithms

As we know, the complexity of a sequential algorithm to solve a problem is defined in terms of the asymptotic
running time of the algorithm on a problem instance of size #. This complexity is shown in ‘big Oh’ or *order’
notation, e.g. O(#(n)): this means that, for all values of n > ny, the running time of the algorithm grows as
kt{n), for some constants np and k.

When a number of processors work in parallel on a computation, we need to define the concept of the
work performed by the algorithm. This necessarily depends on the number of processors used and the
corresponding running time of the algorithm.

For a problem instance of size », assume that an algorithm uses p(n) processors in parallel and has running
time in O(#(n)). Then the work performed by the algorithm on a problem instance of size n is defined as w(n)
= O(p(mum*.

In fact the actual number of processors used during the execution of a paralle! algorithm often varies. In
the summation of Example 13.3, we saw that the number of processors used decreases from #/2 to n/4, n/8,
and so on. But we consider the maximum number of processors used at any step during the parallel execution,
which is 7/2 in that example.

[0 Bork performed by the parallel algorithm can also be referred to as the cost of the algorithm; see the book cited above.
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Now consider two different parallel algorithms, say I and II, for solving a given problem. In solving a
problem instance of size », let these two algorithms perform work wy(n) = O(py(r)1{n)), and wi{m) = O(py(n)
fu(n)), respectively.

We say that algorithm 1 is work-efficient with respect to algorithm 11 if wi(») is in O{wy(n)), Le. wiln) is of
the order of wyy(r). Basically this means that, from the point of view of work performed, parallel algorithm I
is comparable, within a constant multiplier, to parallel algorithm II.

A deterministic sequential algorithm is considered efficient is its running time «(») is a polynomial in »;
bubble sort, for example, has running time in O(»%). For some problems, e.g. traveling salesperson or CNF
satisfiability, no efficient i.e. polynomial running time algorithm is known—-and it is conjectured, but not
proven, that none exists,

In a similar way, we need to define the concept of an efficient parallel algorithm. Keeping in mind the
parallel summation—or in general, reduction—of »# elements, which we discussed in Example 133, we
define an efficient parallel algorithm as follows:

A parallel algorithm is said to be efficient if, for solving a problem of size », it satisfies the following two
conditions:

(1) The number of processors p(n) used is in O(r®), for some constant a, i.e. the number of processors
required is polynomial in #, and

(iiy The running time of the algorithm #(x) is in 0(logbn), for some constant &, i.e. the running time of the
algorithm is polviogarithmic in n.

Note that the numerical integration algorithm of Examples 13.2 and 13.3 qualifies as an efficient parallel
algorithm, witha=1and b = {.

We can now go a step further and define an optimal parallel algorithm:

An optimal parallel algorithm is defined as one which is work-efficient with respect to the best possible
sequential algorithm for solving the problem.

Consider finding the sum of » elements using #/2 processors in logn steps, as discussed in Example 13.3.
Clearly the work done is O(nlogn), and therefore this paralle] computation is not work efficient with respect
to the plain O(7) sequential algorithm for summation. In fact this argument applies to any reduction operation
carried out using an algorithm similar to that of Example 13.3.

o0

Con51der Example 1.5, parallel multiplication of two » x n matrices. The first version of the algorithm uses
w processors and takes O(logn) time. Work done p(n) £ (n) is thus O logn), and therefore this algorlthm 18
not work efficient with respect to the simple three-nested-loop sequential algorithm which runs in O(n ) time.

A modified version of the parallel algorithm is also presented in Example 1.5, which uses n*/logn processors
and runs in O(logr) nme Since the product p(r) {(r) is now in O(1*), the modified algorithm is work efficient
with respect to the O(n”) sequential algorithm.

Example 13.4
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Note that Strassen’s sequential algorithm multiplies two n x » matrices in O( n>*1 time, and in theory even
more efficient algorithms exist for matrix multiplication. Therefore even the modified parallel algorithm of
Example 1.5 cannot be considered optimal.

The student may recall that, for the second version of the algorithm in Example 1.5, the number of
processors used is reduced by a factor of logn, i.e. from 1° to #°/logn. We may say that, in the secend version
of the algorithm, n*/logn processors simulate the work of n* processors which are used in the first version.

In general, we can say that g(»n) < p{n) processors can simulate one time step of p(n) parallel processors
in O(p(n)/g(n)) time steps. Basically, each of the g(#) processors can simulate the computation of p(r)/q(#n)
processors, by executing instructions from that many instruction streams in a round-robin manner. For this,
we must make the reasonable assumption that the ‘context-switching’ time during the simulation, from one
instruction stream to the next, is constant, i.e. independent of #.

Using the argument of this type of simulation, we see that one time step of p(n) processors translates into
O(p(n)/q(n)) time steps of the g(n) < p(n) processors. Thus the running time of the algorithm on the reduced
¢(n) number of processors increases by a factor of O{p(n)/g(n)), giving vs the theorem known as:

Brent’s Theorem!'!!  For a given problem, suppose that there exists a parallel algorithm which solves a
problem instance of size » using p(n) processors in time O(#r)). Further, suppose that we have g(n) < p(n)
processors available to solve the problem. Then the problem can be solved in time O(p(r)t{n)/q(n)).

In simple language, the simulation argument shows that, what we ‘save’ in terms of number of processors
used, is spent on proportionately longer running time. Note that the two versions of the parallel algorithm, on
p(n) and g(n) processors respectively, are work-efficient with respect to each other.

Amdahl’s law (see Chapter 3) divides the computational requirements of an algorithm between the
part which is parallelizable, and the rest which is not parallelizable—i.e. which must necessarily run as a
sequential program. For the concept of work done, we have considered the largest number of processors
used in parallel during the running of the algorithm. Therefore the point made in Amdahl’s law has no direct
bearing on Brent’s theorem; both the theorems make valid statements about parallel algorithms.

To obtain the maximum possible time efficiency from a high performance processor or computer system,
clearly the parallelism in the application must be discovered and then mapped onto the underlying hardware
on which the application is to run.

In the previous section, we have seen a simple example of a parallel algorithm. Now, we can go a little
further by posing questions such as the following:

« What is the nature of parallelism—data parallelism or control parallelism?

+ Is the data parallelism in the algorithm amenable to stream processing, or is it more consistent with the
SPMD mode of processing?

» In case of control parallelism, is it fine grain or coarse grain parallelism?

_ When we design and implement a parallel algorithm. clearly the program has explicit parailelism built
into it. In Section 13.2.1, we have dubbed such parallelism as structural parallelism. For such programs,

1) Gee The parallel evaluation of general arithmetic expressions, by Richard Brent, Journal of the ACM. vol. 21,
no. 2, 1974. Of course Brent's theorem is not a recent development in computer architecture. However, because of its
relevance in the design and performance of parallel algorithms. it has been included in this chapter.
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the programming language—and/or the supporting library of functions—must allow program design using
explicit parallel constructs. The source-level parallel program must then be mapped onto the hardware by the
compiler and the library functions, and then supported by the runtime environment.

Clearly, the programming language, function libraries, runtime environment and the underlying hardware
must all support the parallel constructs used. Some of the most demanding applications of high performance
computer systems today are designed and implemented by intelligent exploitation of structural parallelism.

Applications designed to exploit hardware multithreading!'—either Jfine grain or coarse grain—should
also be considered as examples of structural parallelism. Multiple instruction multiple data ( MIMD)
parallelism, and the more restricted single program multiple data (SPMD) parallelism, both falt into this
category, as does the recently introduced concept of stream processing.

We have discussed in the previous chapter (i) instruction level parallelism (ILP), exploited by the
processor hardware while executing instructions, and (ii) compiler-detected parallelism, which is impliciz in
the application program. Clearly none of these forms of parallelism are involved at the stage of design of a
parallel algorithm.

To clarify this point, we have shown in Fig. 13.5 the three typical stages in the process of writing, compiling
and executing a parallel program. From this diagram, we see that:

(i) Structural parailelism enters into program design at the very first stage in program design and
development, and it needs support from both the underlying stages. If we view program design in
a top down manner, then this form of parallelism is introduced and exploited at the highest level of
abstraction in program design,

(1) Compiler-discovered parallelism is discovered in the second stage. and it needs support from the
underlying hardware. This form of parallelism focuses on a block of instructions, or it may have scope
spanning across two or more blocks.

uii) Processor-discovered parallelism (ILP) is independent of the first two stages; it is discovered and
exploited on-the-fly by the processor hardware; it relies on discovering independence between the
multiple instructions of the program which occupy the fetch buffer and instruction pipeline at one
time,

Application program written in a
higher level language

Compiler, function libraries and
runtime environment

Processor(s) on which application
runs

Fig.13.5 Stages in writing, compiling and running an application

12 The word thread here may refer to a process as defined by the OS. To understand hardware support for multithreading,
the distinction between fhread and process is not crucial. The concept of hardware context applies to both—i.e. regis-
ters, PC, flags, etc. Here we assume that the OS takes care of the differences, if any, between a thread and a Pprocess,
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Presented below is a sequential version of the program of Example 13.2, which can easily be compiled and
run on a conventional single-processor system. Note that Step 2 has a nested loop structure, which takes care
of the Ny x Ny grid in the X-Y plane.

Example 13.5

1. Initialize SUM to zerc
2. For I going from 1 to Ny
For J going from 1 to Ny
Calculate the value of the function
F{X[L11+ AX/2,Y[J]+ AY/2) and add it to SUM.
3. Multiply SUM by AXAY.

Is it possible that a compiler could parallelize this program? The general aim is that, for a system with N,
processors, a parallelizing compiler will produce code which will carry out the above computation in time
proportional to Nx X Ny/N,; here N, need not in general be related to Ny or Ny, except that it is less than or
equal to Ny X Ny,

If the compiler generated code satisfies this condition, then the parallelized version of the algorithm is
work-efficient with respect to the sequential version.

In this particular program, since loop iterations are independent of each other, we may concede that this
program can thus be parallelized.

In the general case, however, this is certainly a non-trivial task, and no compiler can extract the maximum
degree of parallelism from an arbitrary sequential program. Chapter 10 of this book discusses several relevant
techniques. On some systems, for example openMP (see Section 13.4.2), the programmer can pass a *hint” to
the compiler when a loop is to be parallelized, and the compiler can then do the needful.

Parallel programming languages—for example, the newly developed Chapel {see Section 13.4.1}—
provide explicit parallel program structures. Therefore in such cases the job of the compiler does not involve
detection of parallelism, but only efficient code generation for the target parallel hardware platform.

SIMD and MIMD forms of parallelism have been discussed quite extensively in the earlier chapters of
this book. Over the last decade and a half, with newer technology being available and greater demands being
made on systems, a new form of parallelism has been put to use on a wide scale in applications, which has
been dubbed single program multiple data (SPMD).

Parallelism in this case can take the form of one independent thread of execution per task, request or
transaction to be processed. Unlike in the traditional SIMD model, there is no lock-step synchronization here
between the multiple threads, and there need not be one-fo-one relationship between threads and processors.
We may even assume here that the threads execute the same reentrant code. Therefore the SPMD model
of parallelism has the advantages of simplicity of implementation and easy scalability, and the model has
achieved wide-spread use for commercial and server-based applications.
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Stream processing is another form of parallelism, proposed and developed in recent years, which has some
characteristics of SIMD as well as data flow processing. This is a form of data parallelism which relies on
high level of data locality and regularity in the processing of stream data, and can yield huge performance
benefits, as we shall see in some more detail in Section 13.2.4.

Each of the forms of parallelism has its advantages and difficulties. With the background we have gained
thus far, in Section 13.3 we shall look at a few case studies of recent developments in processor and system
architecture, and in program development tools and technigues. Some of these case studies are in continuatjon
of the systems studied in earlier chapters, while others are new entrants.

The important point bears repetition that the technological advances outlined briefly earlier in this chapter
have had a very important bearing on the developments in computer hardware and software technologies.
As the supporting technologies advance further, we shall no doubt see further innovations in computer
architecture and technology as well.

13.2.4 Stream Processing

For animated 3D graphics, multimedia, image and signal processing applications, very high processing power
is needed—and data is processed mostly in the form of data streams. Sometimes animated graphics includes
the simulation of game physics, i.e. simulation of multiple objects in the scene behaving under modeled
physical laws. Other applications where stream processing can be usefu include 3G mobiles, set-top boxes,
biological computations, cryptography, and database queries.

All data elements in a data stream go through the same processing stages. For example, the 3D graphical
model of a car may be made up of hundreds of thousands of line elements or polygons, which must be
processed through the so-called rendering pipeline to display the car on the system display screen. For
animated graphics, a certain number of picture frames must be processed and displayed per second, and in
general each frame must be processed through the same rendering pipeline.

These huge demands made on processing capability are for a single application—e.g. graphics processing,
including game physics. To cater to these highly specialized needs, graphics processing units (GPUs) have
been developed over the years, to relieve the main general-purpose processor(s) in the system of graphics
processing load. The GPU operates in parallel with other processor or processors in the system.

With advances in VLSI technology, GPUs have also grown in processing power. Several research groups
and commercial producers of GPUs have therefore sought to apply the vastly increased processing power of
GPUs to more general computing. This has led to the emergence of stream processing, which combines high
processing power, energy efficiency and programmabitity by exploiting the key properties of data parallelism
and data locality which characterize data streams.

Stream processing can be seen as a new variant of SIMD, in which streams of data flow amongst processing
kernels; in this sense, stream processing involves also some features of data flow processing. The processing
kernels are basically software functions being executed on GPU processor cores. Multiple copies of a kernel
execute in parallel on multiple cores——thus giving SIMD character to this form of processing.

The basic concept is illustrated in Fig, 13.6, with four kernels operating on one data stream. Multiple
such sets of kernels will in general execute in parallel in a stream processor, to achieve proportionately
higher parallel processing power. With sixteen such sets operating in parallel, for example, the total number
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of processor cores employed will be 64, with each of the four kerel functions executing in sixteen cores in
parallel. Note that the number of data streams being processed in parallel will be sixteen.

A so-called local register file is provided with each core to maintain copies of working variables for
the single execution thread (or task) running in each core. There is no multi-threading provided in each
core, but it is possible to exploit ILP to some extent within each core. Data locality plays a key role in the
design of a stream processing algorithm; stream processing is a form of structural parallelism, as defined in
Section 13.2.1.
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Fig.13.6 Four procassing kernels operating on a data stream

The properties of data parallelism and data locality govern the design of stream processors, since they
permit efficient use of the bandwidth to memory—without the use of huge and expensive cache hierarchies.
Recall that cache hierarchies are designed to support any random pattern of accesses to main memory,
whereas memory accesses made for data streams are in a highly regular pattern.

Researchers at Stanford University designed the IMAGINE stream processor, which achieved tens of
Gflops performance for certain graphics applications—with aggregate power dissipation less than 10 watts.
MERRIMAC is the name of another research project at Stanford aimed at a larger computing platform using
stream architecture and advanced interconnection networks. This research project had goals of achieving a
high ratio of computation to communication, very high performance, compact size, high energy efficiency,
reliability, simple system management, and scalabilitym].

Nvidia Corporation[”] has long held a leading position in industry as a producer of graphics processing
units. As GPUs grew in processing power, Nvidia developed more general-purpose processors based on
their graphics expertise. They also defined a hardware/software platform named Compute Unified Device
Architecture (CUDA) for general purpose program development using GPUs and standard programming
languages. Nvidia named this concept GPU Computing—i.e. GPUs applied to general purpose computing.

From around 2006, Nvidia have developed several multi-core, multi-threaded gerneral-purpose GPUs
(also called GPGPUs), which were named GeForce, Quadro and Tesla. With substantial improvements,
Nvidia have now announced their advanced Fermi architecture for GPU Computing.

The first Fermi based GPU from Nvidia has over 3.0 billion transistors and 512 cores. Each core
executes a floating point or integer instruction per clock. The 512 cores are organized in 16 so-called stream
multiprocessors (SMs) of 32 cores each. L2 cache is shared between the 16 SMs. The GPU chip provides six

U3) See hitp://merrimac.stanford.edu and http.//cva.stanford.edu
U4 gee http:/fwww.nvidia.com
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64-bit memory interfaces, for a total 384-bit memory interface, supporting up to a total of 6 GB of memory.
A host interface connects the GPU to the CPU via PCI-Express, while the GigaThread unit on the GPU
schedules groups of threads amongst the SMs.

A schematic diagram of the Fermi chip is shown in Fig. 13.7. Apart from the 32 cores, each SM is also
provided with 16 load/store units, and four independent special function units (SFUs) to compute sine, cosine,
reciprocal, and square root functions. The cores themselves are very basic, with one ALU and one FPU each.,

Compared to earlier GPUs developed by Nvidia, Fermi offers improved memory access and double-
precision floating point performance, ECC support, (limited) cache hierarchy, more shared memory amongst
SMs, faster context switching, faster atomic operations and instruction scheduling, and the use of predication
to reduce branch penalty. Threads are grouped into larger units—known as warps, blocks, grids—for the
purpose of scheduling,

Most of the area in the Fermi chip is taken up by actual processing elements—i.e. FPUs, ALUs, and SFUs.
This is unlike more conventional processors, in which huge cache memories occupy a greater proportion
of chip area. This basic difference accounts for the higher processing performance and energy efficiency of
stream processors.
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Fig.13.7 Block diagram of Fermi GPU

When we compare stream processing with other available technologies for achieving specialized and
power efficient processing, the following broad picture emerges:

(1) Application specific ICs (ASICs) have comparable performance and are power efficient, but they
involve longer design cycles and design costs, and are less flexible.

(i} Field-programmable gate arrays (FPGAs) are less energy efficient, and do not allow applications to be
programmed in higher leve! languages.
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With these advantages going for them, it is quite likely that we shall see more specialized applications of
stream processors in the coming years, :

13.3]] CASESTUDIES

13.3.1 Cray Line of Computer Systems

The name of Seymour Cray!'®! is well-known in computer industry and academia for his path-breaking
innovations in supercomputer architecture, including innovative packaging and cooling technologies. The
design of earlier Cray vector supercomputers has been described in this book (see Chapter 8).

In the next line of products, Cray computer systems combined multiprocessing with vector processing.
Cray X-MP, the first so-called multiprocessor supercomputer, has been described earlier in this book. Its
more powerful successor Cray Y-MP was also a hugely successful multiprocessor supercomputer.

In the category of massively parallel processing (MPP) systems, Cray came out with T3D and then its
more powerful successor T3E, both of which used a 3-D torus topology. The increasing costs of VLSI
processor design had by then led computer system architects to opt for proven processor designs of other
manufacturers. T3D and T3E both employed different versions of the 64-bit DEC Alpha processorsw’].

Subsequently, Cray introduced the XT series of so-called scalable Linux supercomputers. This is currently
Cray’s top-of-the-line massively parallel supercomputer, and further technical details of the system are
provided later in this section.

Cray XMT supercomputer, announced in 2006, is a descendent of the Tera/MTA massive multi-threading
concepts. The system uses Cray’s own 500 MHz, 64-bit Threadstorm processors, each of which can support
128 threads. With as many as 8000 processors, the XMT system can deliver over one million concurrent
processing threads; total shared memory on the system, at up to 8 GB per node, can be up to 64 terabytes. The
system is designed to provide the very high levels of multi-threading performance needed for applications
such as data analysis, data mining, predictive analytics, and pattern matching. The system interconnect used
is Cray’s proprietary SeaStar technlogy, which is also used in the XT5 and XT6 supercomputers {see below).
Scalar processing, /O and service functions are provided by AMD Opteron-based nodes.

Cray CX1 is a lower-end supercomputer from the company which is less expensive and easier to deploy.
It makes use of Intel Xeon processors in a cluster architecture.

1131 Geymour Cray [1925-1996] is known as the father of supercomputing, and is close to being a legend in this field. The
following statement attributed to him should be of interest to any student of computer architecture: Anyone can build
a fast CPU. The trick is to build a fast system.
Seymour Cray was the chief designer of CDC 6600, the first commercial supercomputer ever built, at Control Data
Corporation. This was followed by CDC 7600, before Cray founded his first company Cray Research, which built
Cray 1 and Cray 2. That first company has since undergone several corporate takeovers and makeovers, and is pres-
ently established as Cray, Inc. See http://www.cray.com.

M6l DEC stood originally for Digital Equipment Corporation, of Maynard, Massachusettes, which was at one time the
world’s second largest computer company. It was taken over by Compagq, and at a later stage that company became
part of HP. See hup.//www.hp.com.
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Inmodern computer systems, power consumption and packaging play a key role in system design. Packaging
determines not only the length that signals have to travel, but also the aggregate cooling requirements of the
system. Since the days of Cray 1, Cray computer systems have been justifiably well-known for technical
innovations in system architecture, packaging and cooling.

A recent initiative in the Cray line of systems is the concept of adaptive computing—the idea being to
adapt a hybrid parallel processing computer system to each application through innovative software. The
word Aybrid here refers to a system which combines the elements of vector processing, parallel processing,
and multi-threading.

Since Seymour Cray developed the earliest supercomputers, almost forty years ago, we can discern in the
history of successive Cray products the broad direction in which computer technology and architecture have
moved since those early days.

Cray XT Supercomputers The major current ranges of Cray supercomputers—at present capable of
reaching petaflops performance—are in the XT series, and in particular XT5 and the recently announced
XT6. XTS supercomputers have reached sustained petaflops performance; one particular XT$ system at Oak
Ridge National Laboratory in the US (nicknamed ‘Jaguar®), is currently rated as the world’s most powerful
supercomputer. That particular system uses six-core AMD Opteron processors, with a total of over 224,000
processing cores in the system, and can reach peak performance of over two petaflops.

The brief description given below is specific to XTS5, but it also serves to introduce Cray’s present
supercomputer technology. The main goals of this technology are high computing performance with
scalability and programmability. At the same time, advanced packaging, efficient cooling, and low power
consumption have all along been characteristic features of Cray products; the OS platform employed is
Linux-based. XTS5 is based on AMD Opteron processors (quad-core or six-cote) in a 2D torus network which
is built using Cray’s proprietary SeaStar interconnect.

Each diskless compute node in the network is made up of two Opteron processors, which have a shared
25.6 GB/sec data path to shared local memory; the local memory is 16 GB or 32 GB DDR2 memory provided
with ECC. Each processing core has 64K L1 instruction cache, 64K L1 data cache, and 512 KB L2 cache,
and in addition the processor chip provides 6 MB shared L3 cache.

The proprietary SeaStar high-bandwidth interconnect is based on HyperTransport physical links. Each
SeaStar ASIC (application specific IC) chip is provided with four 12-bit wide network links to the four
neighbouring SeaStar chips in the 2D torus, and one link to the node itself. Each inter-node link, provided
with specially-designed link-level software, has peak bi-directional bandwidth of 9.6 GB/s and sustained
bandwidth in excess of 6 GB/s. Dimension order routing and, for reduced latency, virtual cut-through are
used within the built-in high-speed routers. The chip also has a direct memory access (DMA) engine, a
communication-cum-management processor, and a service port.

As seen in Fig. 13.8, the 2D torus network in the system can be configured with the required combination
of compute nodes, 'O node(s), network node(s), login node(s) and system node(s). Storage arrays are
connected to I/0 nodes, being scalable with the number of I/O nodes provided; the file system manages
striping of file operations across the storage arrays. The network node(s) provide Gigabit Ethernet, 10 Gigabit
Ethernet, Fibre Channel (FC), and InfiniBand connections.
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Fig. 13.8 Schematic of 2D torus network in Cray XT5

For its XT supercomputers, Cray has developed its own Linux-based Cray Linux Environment (CLE}. The
OS kernel operating at compute nodes can be configured for different workloads. For custom applications in
which performance and scalability are of primary importance, the compute nodes can be run in a lightweight
kemel mode, ie. with a very thin OS layer intervening between the custom application and hardware.
When running standard applications, for which compatibility may be more important, the compute nodes
can be configured with a compatible Linux layer, which provides the OS services needed for application
compatibility. A single-root file system is maintained across all nodes, which can be inter-operated with other
files systems such as NFS.

Program development software supported includes Fortran 90, Fortran 95, C, C++, MPI 2, Cray'’s shared
memory software SHMEM, OpenMP (used within a single compute node), and high-performance math
libraries. Other supporting software provided on the system includes performance analysis tools which assist
in achieving better resource utilization and load-balance. Application programs developed for XT can be
based entirely on MPI, with each core in the compute nodes running an MPI task; alternatively, OpernMP
can be used within compute nodes and MPI across compute nodes.

Other critical supporting hardware and software features provided on the system include system monitoring,
fault identification and recovery. checkpoint and restart, system interconnect management, system status
displays for the administrator, redundant power supplies and voltage regulator modules, and redundant data
paths to the system RAID.
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At the 2009 Supercomputing Conference, in November 2009, Cray announced its high-end XT6
supercomputer system, which employs eight- and twelve-core AMD Opteron processors to provide higher
processing performance than XT5; each compute node in XT6 can be provided with 32 GB or 64 GB of ECC
DDR3 iocal memory. In future systems, XT6 can be upgraded to 12- and 16-core Opteren processors.

Both XTS5 and XT6 supercomputers are also available in fully-compatible midrange versions XT5m and
XTém respectively.

13.3.2 PowerPC Architecture, IBM Power7 & Blue Gene

PowerPC Architecture The first articulation and implementation of the concept of reduced instruction set
computing (RISC) is believed to have been by a team led by John Cocke at IBM!!'"], the resulting processor
being known as IBM 801 processor. This processor later evolved into IBM’s Power processor architecture.

In the early 1990s, IBM, Apple and Motorola!'®! used the Power architecture as a basis to define the
PowerPC architecture, with the letters PC denoting performance computing. PowerPC has a simpler
instruction set architecture than the earlier Power architecture; in this sense PowerPC architecture is more in
the spirit of RISC and facilitates high performance implementations.

PowerPC processor architecture has been designed for a very broad range of applications—from low cost
applications, such as embedded applications, to very high performance systems with multiple processors.
Any designer and builder of a specific PowerPC compliant processor must therefore select the target range of
applications. About a dozen companies currently produce processors in this family, IBM being one of them.

PowerPC architecture includes compatible 32-bit and 64-bit operating modes. Functional partitioning
within the processor makes it suitable for providing superscalar capability; the design aims at maximizing
processing throughput rather than clock speed.

There are by now dozens of processors in the PowerPC architecture family; these processors are designed
for various different applications—as embedded processors, in game consoles, in servers and mainframes, in
high performance computing systems, and others. As a specific example, we shall take a brief look below at
the ambitious Power7 processor currently under development at IBM.

IBM Power? Processor IBM Power7 is a high performance server processor under development which—
when it is released in 2010—is likely to be the most powerful processor in the large PowerPC family. The
processor is designed using 45 nm VLST technology, and has about 1.2 billion transistors on a chip area which
is slightly under 6 cm”. The design clock speed of the processor is slightly over 4 GHz.

Power7 is planned as a multi-core processor with 4-, 6-, and 8-core versions. Each core supports 4-way
simultaneous multithreading (SMT). A system will in general consist of multiple circuit boards, each of them
with multiple processor sockets,

As we have discussed above, bandwidth becomes a critical requirement in supporting multi-core, multi-
socket and multiprocessor systems. To address this requirement, each Power7 processor has a pair of
4-channel DDR3 controllers, to sustain 100 gigabytes per second of memory bandwidth. The large 32 MB
L3 cache uses so-called embedded DRAM technology for reduced chip area and power consumption.

(7] Gee http./fwww.ibm.com. The interested reader may see The Evolution of RISC Technolugy at IBM, by 1. Cocke and
V. Markstein, IBM Journal of Research and Development, 34(1):4- 11, 199¢,

1% gee http.//www.powerorg, For the purpose of this brief case study, we feel it is not essential to discuss in detail the
differences between Power and PowerPC instruction sets.
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To support superscalar operations, each Power7 core has twelve functional units: two integer units, four
double precision floating point units, two load/store units, and one each of decimal floating point unit, vector
unit, branch unit, and condition register unit. The decimal floating-point unit addresses the needs of typical
mainframe applications.

Within the processor, after the decode stage, instructions are dispatched and tracked in bundles which
occupy six time slots of the processor clock. The idea behind this feature is that the hardware bookkeeping
which is required for tracking instructions during their execution is thereby simplified.

IBM Blue Gene IBM Blue Gene refers to a series of massively parallel supercomputers being designed
and built mainly by IBM, but with active support from the US Government and academia. Blue Gene/L, the
first in this series of supercomputers, has already been delivered at a few sites and has been in operation.
One key targeted application of this supercomputer is in carrying out biomolecular simulations to study, for
example, the folding patterns of protein molecules, which have a bearing on their function.

Targeted peak performance of this supercomputer is the petafiop region, i.e. 10'° floating point instructions
per second. Since per processor performance is in the range of gigaflops, it is clear that petaflop range
performance can only be achieved with a large number of processors operating in parallel.

A computation node in the massively parallel system has two cores of PowerPC 440, with shared on-
chip L3 cache. Inter-processor connection network has a basic 3D torus topology, but two other networks
are also provided—one for global communication and another for barrier synchronization. Each core in the
system runs very lightweight Linux OS with a single process. Processors can be partitioned amongst multiple
applications, with the additional benefit of improved fault isolation. It is noteworthy that standard Linux
applications such as MySQL have been run successfully on the system.

Asingle Blue Gene/L cabinet houses up to 1024 computation nodes, while the system can host 2 maximum
of 65,536 (i.e. 216) computation nodes. Processor clock speed is 700 MHz—kept relatively low for reduced
power consumption. Power consumption is an important issue in such MPP systems, since a reduction in
power consumption allows denser packaging, and also reduces overall power and cooling demands.

The design of Blue Gene has been recognized for its many technical innovations, and the supercomputer
series is likely to provide several landmarks in the development of high performance computer systems. After
Blue Gene/L, subsequent and more powerful supercomputers in the Blue Gene series are designated with
letters P and Q. An explicit design aim is to achieve higher computing performance per watt, and thereby
allow systems to be built with larger numbers of processors operating in parallel.

13.3.3 Tilera’sTILEé4 System

VLSI technology today allows the design and fabrication of chips with over a billion transistors. System-on-
a-chip (SoC) is now a reality, but the question is how to divide the on-chip resources amongst the functional
blocks and the vital interconnects, which extend both within the chip and to external memories and interfaces.
We may say that the basic question is how best to architect a system. To understand better the design trade-
offs involved, we now look at an innovative new architecture of a system-on-a-chip.

Tilera Corporation“g] is co-founded by MIT Professor Dr Anant Agarwal, who is considered a pioneer in
developing the system architecture exemplified in TILE64. Earlier, Dr Agarwal was closely associated with

(19 See http:/www. tilera.com
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the Alewife project at MIT, a scalable multiprocessor system based on cache coherent non-uniform memory
access (c¢cNUMA) design, making use of single chip processors.

TILE64 is a 64-core processor for embedded applications, in which cach chip consists of a regular
8 x 8 grid of files. Typical embedded applications for which TILE64 is well-suited are those which are very
highly computation-intensive, such as network routers, encryption/decryption, video applications, and signal
processing,

As seen in Fig. 13.9, each tile on the TILE64 chip has its own general purpose processor core, L2 cache,
and a non-blocking mesh router to provide for communication with other tiles on the chip, and for off-chip
data traffic with main memory, IO devices and networks. The name given by Tilera to this on-chip mesh
interconnect is iMesh.

TILE64 is fabricated using 90nm VLSI technology, and runs at speeds of up to %00 MHz.
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Fig.13.9 One tile in the TILE64 system-on-a-chip

The processor core in each tile is a relatively simple RISC-style processor which does not, for example,
provide for out-of-order execution of instructions. Each processor core has three functional units: two 32-bit
integer ALUs and a load-store unit. The design emphasis in TILE64 is not so much on the processor, but on
the iMesh-based system-on-a-chip architecture, cache management, support for high data rates required to
main memory, and other critical elements which impact system performance.

On an L2 cache miss, the processor checks the other on-chip L2 caches for the needed data, before making
a slower access to main memory. In this sense, the combined L2 cache memories of the 64 processors can be
viewed as forming an L3 cache,

According to Tilera Corporation, “iMesh provides each tile with more than a terabit of bandwidth, creating
a more efficient distributed architecture and eliminating the on-chip data congestion”. In fact iMesh consists
of five independent communication structures, which provide for, respectively:

+ Communication between user processes/threads running on tiles
* Communication with I/O devices
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« Communication with off-chip main memory
+ Tile-to-tile cache transfers
+ Low latency interconnect for streaming data
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Figure 13.10 depicts the architecture of this 64-core system-on-a chip.

13.3.4 Sun UltraSparcT2 Processor

Starting from around the mid-1980s, the concept of reduced instruction set computing (RISC) began to be
more widely known, following the work done by David Patterson at the University of California, Berkeley,
and John Hennessey at Stanford University. The work done at Berkeley led subsequently to the development
of the Sparc processor by Sun Microsystems[m] in the late }980s.

The basic idea of RISC is that, with a reduced instruction set, a processor can in fact perform more useful
work per second. The two key elements of processor architecture which make this possible are the instruction
pipeline and the cache memory (which in today’s processors may be organized at L.1, L2 and L3 levels).

The original Sparc processor is a 32-bit RISC processor with load-store architecture, relatively simple
addressing modes, and register-to-register arithmetic/logic machine instructions in three-address format.
Separate registers are provided for integer and floating point operands. Of the 32 integer registers, some play
a special role in passing arguments during function calls from the calling to the called function.

UltraSparc is the 64-bit enhanced version of Sparc, and UltraSparc T2 is the newest multi-core, system-on-
a-chip version of UltraSparc with extensive on-chip support for multithreading, networking, /O, and other
key functions.

For increased processor performance, one design option for processor designers is to maximize instruction
issue rate by increasing the number of stages in the instruction pipeline. The idea is that—with each

{20 gee hitp:/fwww.sun.com. Before Sparc, the company used Motorola’s 680x0 series processors in its workstations.
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pipeline stage doing relatively less work in a clock cycle—it is possible to drive the processor with a higher
clock frequency. However, the problems of pipeline flushes and stalls do not go away, and the total power
consumption of the chip increases rapidly with clock frequency. As a result, total power consumption of the
chip becomes a limiting factor in achieving higher performance.

In this connection, the following observation is of interest?'!:

Power and memory latency considerations place additional obstacles fo improving single-thread
performance. While recent attempts at improving single-thread performance, through even deeper pipelines,
have led to impressive clock frequencies, these clock frequencies have not translated into demonstrably better
performance over less aggressive designs.

UltraSparc T2 and its predecessor UltraSparc T1 are designed to achieve higher processing throughput
by adopting a different strategy. The architecture of these multi-core chips is designed for those highly
demanding applications which exhibit a large degree of thread level parallelism (TLP), but not necessarily
much instruction level parallelism (ILP). The strategy implies that the compute time and memory latencies of
multiple executing threads are interieaved in time, with increased total throughput.

UltraSparc T2 has eight processor cores on the chip, with each supporting eight-way fine-grained muiti-
threading. Overall, therefore, the chip supports sixty four parallel threads. The chip also contains a crossbar
switch, shared L2 cache, and extensive support for /O and networking, and therefore it is in fact a system-on-
a-chip (SoC). Since the threads run independently of each other and share hardware resources, each thread
behaves as a processor in its own right; thus the single chip can support 64 virtual systems.

Figure 13.11 depicts schematically the architecture of UltraSparc T2.
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Fig.13.11  Architecture of UltraSparc T2 system-on-a-chip

Y From Chip Multithreading: Opportunities and Challenges, by L. Spracklen and S. G. Abraham of Sun Microsystems,
IEEE International Symposium on High-Performance Computer Architecture (HPCA-2005), 2005.
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The T2 chip has an area of just under 3.5 cmz, with about 500 million transistors on it, and is fabricated
using a VLSI process of 65 nm line width. The chip can operate at | .4 gigahertz with 1.1 volt supply, and has
1831 pins on its underside for connection to the rest of the computer system. Nominal power consumed by
the chip is 95 watts; on the basis of power per cm? of area, this is greater than that of an iron. However, on a
per thread basis, this power consumption works out to be quite low.

Each of the eight processing cores on the T2 chip has its own data paths, register sets for multiple threads,
two integer operation units, and a floating point unit. In addition, each core has hardware provided for
cryptography and graphics, and has support for eight-way fine-grained multi-threading. These hardware
resources, and the per core L1 instruction cache and data cache, are shared by eight threads executing on
each core,

At the level of the system-on-a-chip, othet hardware resources such as the 4 MB L2 cache are made
available to the eight cores by means of a crossbar switch. For faster access, the L2 cache is organized in the
form of eight parallel banks. Memory intetfaces, [/O interfaces, and networking are also shared amongst the
cores. Networking capability consists of two network interfaces of 10 gigabits/second each.

Design of UltraSparc T2 is targeted towards compute-intensive applications with a high degree of multi-
threading. Apart from back-end servers, these include network devices such as packet routers, switches for
local area networks, graphics and imaging applications, and other similar applications.

A unique feature of the UltraSparc T2 chip is that its complete design has been made available on the web
to researchers and developers under an ‘open source’ arrangement, The stated objective behind this decision
by Sun Microsystems is to encourage innovations around the werld in processor design and applications.

13.3.5 AMD Opteron

AMD?%, a major manufacturer of semiconductor devices, is known for its processors which are instruction-
set compatible with Intel’s x86 family of processors. Opteron is a high performance 64-bit processor from
AMD which maintains instruction set compatibility with the 32-bit x86 instructions without any performance
penalty.

AMD’s 64-bit instruction set architecture provides for 64-bit operands, 128-bit operands, and 64-bit
virtual addresses. The development of such a 64-bit extension of the Intel x86 architecture is targeted towards
applications which require huge amounts of memory, examples being high performance servers, workstations,
database management systems, and engineering design tools. The processor also provides integer and floating
point vector operations for graphics/multimedia types of functions, some of which are known as streaming
SIMD extensions (SSE); in this category, combined multiply-add as well as matrix operations are provided.

Opteron is characterized by a fairly large split L1 cache, with 64 KB for instruction cache and 64 KB for
data cache. L2 cache is either 512 KB or 1 MB, depending on the model, while the shared L3 cache goes
up to 6 MB on the newest six-core models. Since 2003, when the processor was introduced, it has been
implemented using the successive 130 nm, 90 nm, 65 nm and 45 nm VLSI technologies.

The processor architecture is 3-way superscalar—i.e. up to 3 instructions can be completed per clock cycle.
Speculative and out-of-order execution is provided, as is register renaming, to remove apparent dependencies
between instructions in the instruction pipeline. ’

1221 e hup:/iwww.amd.com.
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Support for multiprocessor systems is provided on the basis of cache coherent non-uniform memory
access (ccNUMA), rather than the symmetric multiprocessing (SMP) design with a common shared
memory. A processor ¢an access the memory of another processor, and sophisticated snooping hardware is
provided to ensure cache cohefence. Compared to SMP systems, such systems can support a higher degree of
multiprocessing without running into the memory bandwidth bottleneck.

Unlike in the Sun UltraSparc T2, there is no hardware support in the Opteron processor cores for multi-
threading, reflecting the different design objectives behind the two processors. Multi-core versions of the
processor have been manufactured with up to six cores per chip. HyperTransport links {see Section 13.1.4)
are used both for processor-memory communication and for inter-processor communication.

As seen above, Cray has incorporated the Opteron processor into their XT series of supercomputers,
which can support configurations having thousands of processors. Some of the world’s most powerful
supercomputers are based on this Cray architecture using large numbers of Opteron processors. Sun
Microsystems uses the Opteron processor in its high-end servers having large processor counts.

When we compare the design of the Opteron processor with those of TILE64 and UltraSparc T2 processors
(see above), a natural question arises with reference to the basic design goals of any computer system:

Which of the following two models of computation should the system architecture target?

(i) A relatively smaller number of ‘heavier’ threads of computation, with one thread running per core, or
(i) A larger number of ‘lighter’ threads of computation, with multiple threads running per core.

Clearly, the choice depends on the class of applications for which the system architecture is being
designed. Opteron, UltraSparc T2 and TILE64 represent different possibilities in the number of execution
threads versus the processing power per thread. The architects of a computer system, knowing the targeted
application load, must make the right choice.

13.3.6 Intel Pentium Processors

Intel?*) 8088, used in the original IBM PC, was a 16-bit processor with 20-bit physical address, i.e. total
physical address space of 1 megabyte. Logical memory space consisted of four segments—namely, code,
data, stack and extra segments. A 16-bit segment offset meant that each segment was limited to 64 kilobytes.
As VLSI technology advanced, successively upgraded members of the so-called x86 processor
family—80286, 80386 and 80486—had larger memory address space, 32-bit word size, higher clock
frequencies, on-chip cache and memory management functions, and additional instructions, including floating
point instructions. Successive models of the immensely popular PC were built around these processots.
Therefore, maintaining backward compatibility of instruction set with earlier processors of the x86 family
has always been a non-negotiable design requirement of any new processor of the family, since all software
written for earlier versions of the PC had to run with its subsequent versions. This critical business requirement
pushed Intel processor designers to the limits of their ingenuity—since they had to achieve higher processor
performance with every mode!, while maintaining at all times full backward compatibility of instruction set.
With rapid advances in VLSI technology, as it became possible to build enormously more powerful
single-chip microprocessors, the spotlight turned on the critical role of the instruction set in achieving high

2% See hup:iwww.intel.com
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performance, Benefits of the RISC approach soon became clear to processor designers, and all new processor
designs benefited from the new ideas. But the only way for the Intel x86 family of processors to maintain
backward compatibility in instruction set was to continue with its CISC approach.

Designers at Intel pushed the frontiers of VLSI technology to achieve higher processor performance while
maintaining backward compatibility. The original Pentium and its successors were introduced as advanced
sequels to the Intel 80486 processor. Even with the inherited CISC instruction set, these processors combined
standard RISC design techniques in their internal architecture—such as a micro-operation pipeline, multiple
functional units, and out-of-order scquencing.

Figure 13.12 is an overview of the architecture of the Pentium 4 processor.

The processor has two levels of cache memory—IL.1 and L2. The faster but smaller L1 cache is divided
into 8 kilobytes of instruction cache and & kilobytes of data cache, while the larger L2 cache is a combined
instruction and data cache of 256 or 512 kilobytes, depending on the processor model. The main memory
may also be provided with an additional off-chip L3 cache.

The Fetch/Decode unit {marked °A’ in the figure) is connected to the L1 instruction cache. This unit
fetches and decodes successive mstructions. producing several so-called micro-operations corresponding to
each machine instruction, These micro-operations are forwarded to the micro-operation buffer (marked ‘B’),
in which micro-operations produced by multiple machine instructions are buffered.
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Fig.13.12 Internal architecture of the Pentium 4 processor

For execution by specific functional uniis—such as the integer ALU or the FPU—micro-operations are
forwarded 1o a reservation station. An operation is performed in a unit when its operands become avatlable
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and the functional unit becomes free. Execution of micro-operations need not follow the order in which
machine instructions are fetched. Data load and store operations on memory are carried out by the foad unit
and store unit, respectively, which operate as functional units connected to the L1 data cache.

The reservation station and the functional units together make up the execute unit of the processor (marked
‘C’). Within this execute unit, hardwired control is provided for the simpler instructions of the processor,
whereas complex instructions of the CISC type are provided with microprogram control. This is one of the
ways in which RISC and CISC approaches have been combined in the internal architecture of the processor.

When all the micro-operations of an instruction have been performed in the execute unit, the instruction
is commtitted (or retired)y to main memory. This work is carried out by the commit unit (marked ‘D), which
ensures that completed machine instructions are committed in the order in which they are fetched, as the
programmer expects.

Fetch/decode unit (‘A’), execute unit (‘B’) and commit unit {'I)’) operate in parallel, sharing the common
micro-operation buffer (*C’). Thus these three units can be said to form a *high-level’ pipeline through which
instructions pass. But each of these units is also implemented as a pipeline, so that multiple instructions can
be in each of these units at one time, each in a different stage of processing. Branch prediction logic, which
is required with the instruction pipeline, is also provided.

Memory management functions on the processor provide support for virtual memory using paging and/or
segmentation, as well as memory protection for user programs and the operating system; segmenis may be
shared between running programs.

(13.4]f PARALLEL PROGRAMMING MODELS AND LANGUAGES

With all the recent advances in the hardware architecture of high performance computer
systems—of which we have seen a few examples above—it is still a major challenge to map
an application program to make efficient use of the underlying hardware. Inability to achieve this aim results
in the gap between theoretical peak performance of a system and the actual application performance achieved
in practice.

To allow software designers to build parallel applications, one possibility is to provide so-called paralle!
constructs as extensions to sequential higher level languages. Chapters 10 and 11 of the book discuss some
of the relevant issues in this context.

But another exciting possibility is to design a new parallel programming language from first principles, to
provide parallel programming constructs which are based naturally on the way in which parallel algorithms
are conceived. We shall now see an example of this approach, a new parallel programming language being
designed at Cray.

13.4.1 Parallel Programming Language Chapel

Chapel is a new parallel programming language being developed by computer scientists at Cray Research.
The word Chapel has been derived from cascade high-productivity language—by taking the first letter of each
of these words and inserting a couple of helpful vowels. The project is currently at research and development
stage, in which several Universities and research centers are collaborating. The Chapel developer team
clearly indicates that it is open to work with other computer scientists interested in parallel programming.
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Chapel is one of three such parallel programming languages being developed in the US under the prestigious
High Productivity Computing Systems (HPCS) program, the other two being X10 being developed by IBM,
and Fortress by Sun Microsystemslz‘ﬂ.

The specific goals behind the development of Chapel are: programmer productivity, programmability of
parallel computers (improving over the older parallel programming models), better portability, and robustness
of the parallel programs developed. Target architectures for the parallel machine language programs generated
using Chapel are multi-core systems, computing clusters, as well as special high performance computing
platforms from Cray and other vendors.

Chapel is intended for general parallel programming; it provides high level abstractions for data-
parallelism, task-parallelism, and nested parallelism. The aim is that the language should allow all the broad
types of software parallelism to be expressed, and should be targeted towards general levels of hardware
parallelism.

Chapel provides global-view abstractions, 1.e. program structures which allow the source code to describe
the computation as a whole—rather than parallel fragments (such as processes or threads) that must be
somechow made to communicate and work together. The language provides for so-called multi-resolution
design, which means that the programmer has the choice of using higher level or lower level abstractions.
Control of locality is provided, so that data and computational threads can be placed at specific locations
within the parallel processing system.

Programs written in a language such as Chapel do not overtly depend on MPI (or similar) library of
communication or synchronization functions, since the semantics of parallel computations are provided in
the language itself.

Overt use of lower level functions in a program—such as those in MPI—does not hide communication
and synchronization mechanisms; such lower level functions thereby complicate programs and make them
error-prone and difficult to maintain. Compared to Chapel, parallel programming using MPI functions can
therefore be thought of as analogous to assembly language programming.

Language Features

Like C or JAVA, Chapel is a block-structured, typed language with imperative statements. Object-oriented
programming features are provided—similar to those in C or JAVA—but Chapel programs can also be written
without using these features; explicit manipulation of pointers is avoided. Parallel programming features in
Chapel are based on the features carlier intreduced in ZPL, HPF?* and Cray’s own parallel version of C/
Fortran developed for their MTA systems.

(@) Data Parallelism Data parallelism is supported with the use of domains, distributed domains and arrays,
and iterators based on index sets. In the example below, D is being defined as a 2-dimensional domain with
integer index values running from 1 to 4 and 1 to 8, respectively.

var m = 4, n = 8;

var D: domain(2} = [1..m, 1l..n];

1231 Eor more information, see htp://chapel.cray.com, http://x]0-lgng.org, and htip://projectfortress.sup.com

1251 See htp:/fwww.cs. washington.eduvesearch/zpl and http://hpffrice.edw/
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Now one or more arrays, with eleménts of any base type, can be defined using D as the underlying domain
which defines the array structure. For example:

var A, B: [D] real; // Note use of domain name D

Thus an array is created when each element of the underlying domain is mapped to a data element of the
base type, which is real in the example above. A sub-domain of a domain can also be defined, as in;

var InnerD: subdomain (D} = [2..m-1, 2..n-1];
var smallA: [InnerD] reszl;

The relationship between domains D and InnerD is clarified in Fig. 13.13.

/— domain D

\ domain InnerD

Fig.13.13 Relationship between domains D and InnerD

Domains or sub-domains can be used to govern iterations, as in:

feoer (i,3) in InnerD do
A(i,j) =1 + 3/10.0;

A shorthand notation for this same iteration is:
i(i,j) in InnerD] A(i,3) =1 + j/10.0;

Thus domains support data parallelism by defining index sets, based on which arrays can be defined, and
in controlling sequential and parallel loop iterations. Both data arrays and loop iterations can be distributed
across the multiple processing elements in the system.

An index set can be of one of three types:

(i) Arithmetic indices (seen above) define Cartesian tuples, and are similar to integer indices used in other
programming ianguages; an arithmetic index can optionally be made strided or sparse.
(ii) Associative indices have arbitrary values which serve as keys to hashed structures.
(iii) Opaque indices are anonymous, in the sense that nothing is said about the elements making up an
index set; such indices support the concept of unordered sets of elements.

Just as functions are defined, iterators can be pre-defined to yield successive values from an index set.
Such iterators can then be used for governing loop iterations which range over the defined index sets. A pre-
defined iterator can be used wherever loops with that particular iterative structure are needed in the program.
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(b) Task Parallelism  Task parallelism is supported with the use of high level language features as well as by
lightweight synchronization operations. Synchronization variables are provided as a special type.

For example, readFE () operation on a synchronization variable causes the calling process to wait until
the variable is fif, and makes the variable empry after its value is read by the process.

Similarly, writeEF () operation on a synchronization variable causes the calling process to wait until
the variable is empty, and makes the variable full after its value is written.

Task parallelism is supported in both structured and unstructured forms. The keyword begin initiates a
separate thread executing the specified statement, as for example in:

begin runMyThread(};

No join operation is implied when a thread is initiated using begin. Structured thread invocation is
supported by, among others, the cobegin statement, as in:

cebegin |
myThread (1) :
myThread(2);
myThread({3) ;
}

Note that here an implicit join takes place at the end of the cobegin block.
The statement coforall executes loop iterations in paralle! threads, with an implied join, as in:

coforall 1 in 1..numThreads {
myThread (i}
}

As against this, the statement forall implies that iterations may be executed in parallel, depending on
the distribution of the concerned domain:

forall {i,j). in InnerD do
A(i,d)y = i + 3/10.0;

Concurrency can be inhibited explicitly, based on conditions specified. Azomic operations are supported.
An atomic operation is one which, when performed within one thread, appears atomic to all other threads in
the program—i.e. they cannot see any partial result produced by the atomic operation.

When a scalar operation or function is applied in parallel to all elements of an array, the operation is said to
involve promotion. Promotions are executed in parallel, with an implicit forall controlling the execution,
Given arrays A and E, a simple example of promotion is:

B =2 *A;

When an operator is applied to array elements to obtain a scalar value, the operation involves reduction
(see Section 13.2.2). An example of reduction in Chapel is:

sum = + reduce A; // find the sum of all elements in A
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Simple syntactic notation is also provided in Chapel for domain and array sficing; the definition of domain
InnerD above is an example.

As mentioned above, loop iterations are governed by domams or iterators; and, as we know, loops provide
huge potential for parailelism. Therefore several statements are provided in Chapel to specify the mode of
loop parallelism to be utilized.

As in C or JAVA, a for loop generates a single thread to execute all loop iterations. A coforall loop
generates a separate thread for each loop iteration. The third variant is a forall loop, in which some
number of threads are created for the loop iterations, as determined by the loop iterator expression, or by the
domain or array distribution.

A special type in Chapel known as Jocale is used to specify an architectural unit of locality of processing;
each locale is understood to have processing and memory functionality. In a system, this may refer to a
processing element (PE), as we have used the term in earlier chapters, or even a multi-core processor.

For a program running on N locales, the locales are numbered from 0 to N-1; execution of the program
begins with one task running on Iocale 0. The number of locales available to the program is specified on the
command line.

The statement:

on loc { statements }

causes the specified statements to be executed on the specified locale 1oc. The special locale named ‘here’
refers to the locale on which the reference is made.

A distribution is a2 mapping from domain or array indices to locales—i.e. it is the basic mechanism of
achieving data distribution across the locales. A ubiquitous variable can be created, with the semantics that
each locale has its own copy of the variable, i.¢. the variable is replicated on all locales.

Chapel programming language has initially been implemented using Chapel-to-C compilation, followed
by standard C compilation and use of support libraries. It is freely available as a download for research
purposes and/or for contributing to its further development and refinement.

In the earlier chapters of the book, we have discussed at some length topics such as compiler-detected
parallelism and dependence checking within array references in a loop. Tt should be noted that, when a
global-view parallel programming language such as Chapel is used, the function of the compiler changes
substantially. All the data and task parallelism in the program is now made evident in the program at a higher
level, and therefore detection of parallelism by the compiler is no longer the primary issue. The main goal
of the Chapel compiler is to efficiently map the defined parallel semantics of the source program onto the
underlying parallel processing hardware.

13.4.2 Function Libraries for Parallel Programming

Standardized functions which support a parallel programming paradigm offer a practical alternative to
programming language extenstons, because they can work with a range of programming languages, such as
C, C++ and Fortran. Since these sequential programming languages have already achieved a Jegacy position
in the computing profession, perhaps inevitably the standardization of parallel programming paradigms has
become partly separated from issues of language definition.
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We now look at several such standardized models of parailel programming, two based on the message-
passing model, one on shared memory multiprocessing and one on software multi-threading.

Message Passing Interface (MP]) Message Passing Interface (MPI){%] is widely used to build applications
for distributed memory as wel! as shared memory architectures. As we know, in the message passing mode of
interprocess communication, message data moves from the address space of one communicating process fo
the address space of the other communicating process, over the underlying communication layers.

The message passing operation requires both the communicating processes to issue appropriate function
calls. Typical point-to-point communication under MPI is carried out using the basic send and receive calls
MPI Send and MPI_Recv; but, as we shall see below, MPI offers much additional functionality as well.

It could be argued that interprocess synchronization and communication achieved through shared memory
operations—such as test-and-set—is more efficient than message passing. But the fact remains that message
passing offers a higher level abstraction for building parallel applications which is more robust against
processor speeds, types of interconnects, and so on. Message passing primitives can be provided on both
distributed and shared memory architectures, whereas it is not really practical to provide shared memory
primitives on a distributed memory system.

MPI supports the general MIMD model of parallel processing, as well as the more restricted single
program, multiple data (SPMD) version of parallelism. The interface is versatile encugh to support a high
performance computing platform, a lower cost network of computers, or even modern multi-core chips.
Amongst the original design goals of MP1 are source code portability and language independence.

The first version of MPI, known as MPI 1 standard, was published in 1994, supported by a consortium of
computer scientists and vendors. It is defined as a specification for a library of functions, available to vendors
and other groups for implementation. MPI 2 standard was published in 1998, with provision for additional
features such as dynamic process management, remote memory operations, and parallel I/O.

The underlying communication layer for MPI is often TCP/IP, although that is not part of the specification.
Given the nature of the message passing mechanism, support for heterogeneous environments is a major
natural benefit of the MPI platform.

Apart from basic interprocess message passing and synchronization, MPI provides several additional
facilities for the design of parallel applications, such as:

+ broadcast, gather and reduce operations

» barrier synchronization between processes

= user-defined topology over the processes

» user-defined data types for C, C++ and Fortran

» synchronous and asynchronous modes of communication
« buffered and unbuffered communication

An MPI application consists of multiple processes. Amongst these processes, various modes of
communication can be provided using the programming interface which is available through higher level
languages such as Fortran, C, and C++. Processes are mapped to hardware processors, which may be on the
same chip, the same system, or on different systems which communicate over a network.

(281 See hetp:/fwww.mpi-forum.org
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Processes are grouped together into so-called communicators, within communicators, messages are sent
and received using functions such as MPI_Send and MPI Recv.

In Example 13.3 we saw that, with parallel processing, an associative operation—such as addition—can
be performed over » operands in log,n steps. In Figure 13.14, for implementing such an operation over eight
operands, we see a logical network topology in the shape of a binary tree. The number of time steps required
equals the height of the tree, which is log,8 = 3.

ao 34 as ag a4 35 33 as

Fig. 13.14 Tree-structured logical process topology

In Fig. 13.14, example process IDs are shown next to the circles which represent processes, while the eight
operands shown at the bottom are assumed to reside in the respective processes.

In the first step, four processes are performing the operation; in the second step, two processes are
performing the operation; and in the final step, the final result is produced by the process P0 which is shown
as the root node. As compared to Example 13.3, here we see the significance of the logical process topology
in terms of the specific interprocess communication required for a given application.

Let us suppose that the underlying physical network topology in this particular case is a 2-D torus (as in
Cray XT35). Then the communication pattern indicated above must be achieved through appropriate routing
over the underlying hardware interconnect. This would be part of the MPI implementation rather than its
specification.

If we count each upward arrow between processes in Figure 13.14 as one unit of communication, then
it is easy to see that the total amount of communication taking place, for the operation as indicated over
the # distributed operands, is (# — 1). The number of time steps required is logs#. Therefore the amount of
communication taking place per unit time is proportional to #/(log;n)}—i.e. it grows with increasing n.

This example clarifies further why very sophisticated inter-processor communication needs to be provided
on modern multiprocessor systems or multi-core chips, such as the Cray XT, IBM Blue Gene, and the TILE64
multi-core chip (see above).

openMP openMP—which stands for Open Multi-processing—is a standard API for parallel applications
based on the shared memory model of multiprocessingm]. As in the case of MPI, this standard is also defined
by a consortium of computer scientists and vendors. Like MPI, openMP is also a specification, for which any
multiple computer vendors or other groups can provide compliant implementations.

Achieving portability and scalability in shared memory parallel applications is a major aim of defining
the openMP standard. The first version of the standard was published in 1997, and the current version was

(27 See hap:/iwww.openMPorg
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published in 2008. Language support defined within openMP includes C, C++ and Fortran. openMP makes
use of compiler directives which, if ignored, result in sequential execution of the underlying program.
Applications can be parallelized incrementally, and the granularity of parallelism may be coarse or fine.

The basic concept in openMP is that a master thread can generate so many slave threads, which may be
executed in parallel over available processors. Thus the basic parallel construct is a paired combination of
fork and join (see Chapter 10), with an implicit barrier at the point where the slave threads join. This basic
parallel construct may be nested, as shown in Figs. 13.15 and 13.16. There is no restriction that the number
of threads must equal the number of available processors,
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Thread memory may be made private or shared, and there is a flush operation available for shared
memory. A feature known as work-sharing allows assignment of independent loop iterations to separate
threads. Synchronization mechanisms such as critical section and explicit barriers are available; reduction
operation is also provided.
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PThreads POSIX, or Portable Operating System Interface for UNIX, is an operating system interface
standard of IEEE which is supported by a large number of computer companies. PThreads—or POSIX
Threads—is the part of POSIX which pertains to the development of multi-threaded applications.

Functions and APIs are provided under PThreads for:

(1) Thread management—i.e. create and join threads, set and query thread attributes, etc.

(2) Mutex (mutual exclusion) variables—i.e. create, destroy, lock and untock operations, used for
synchronization amongst threads,

(3} Condition variables—to provide wait and signal communication between threads, and

(4) Synchronization—to provide read and write locks, and barrier synchronization.

Recall that under UNIX, threads exist within a process and use resources allocated to the process by the
operating system. Each thread has its independent thread context—PC, registers, thread status, etc.—but all
threads share the same process memory image. Once created, threads are peers, and may create other threads.
There is no implied hierarchy or dependency between threads. Processing load may be divided amongst
threads in a hierarchical model or a flat peer-to-peer model.

Using PThreads functions, the programmer must provide the required synchronization between threads.
Because of lower overheads in managing threads as compared to processes, multi-threading under Unix is
much more efficient than using multiple processes. Multithreading using PThreads is also more efficient than
MPI on the same processing element, or on a symmetric multiprocessor, because the multiple threads execute
out of the common shared memory of the process.

PYM (Parallel Virtual Machine) Parallel Virtual Machine (PVM) is a platform for distributed applications
developed at Oak Ridge National Laboratory in the US, in association with other Universities, in the late
1980s and early 1990s. The development was carried out as part of a larger research project into distributed
computing.

Under PVM, an application is conceived as a collection of tasks (in fact processes) which run in paraliel,
on one or more machines, and communicate by sending and receiving messages amongst themselves. Tasks
are identified by task IDs, and there is also provision for defining groups of tasks.

Heterogeneous processing environments are supported under PVM. A system seen as a virtual processing
element may be a single-processor system, a multiprocessor, a cluster, or any other type of processing resource.
The network underlying PVM may also be heterogeneous, in the sense of being made up of different types of
links. Machines—i.e. virtual processing elements—can be added or removed during operation of the PVM
system as a whole.

FVM can support functional parailelism, data parallelism or a combination of the two, using C, C++ and
Fortran languages. In many ways, PVM is similar to MPI, but, as we have seen in the case studies, MPI has
gained much wider acceptance amongst the community of users who develop parallel applications.
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Summary

Major trends and developments in computer- architecture are influenced strongly by (2) advances in’
underlying technology, and (b) growth In range of applications. We started the chapter with a brief
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review of some of the key technological advances wh:ch have had an smpact on processor and system
architecture over | the last couple of decades,

Steadily decreasing line widths and faster clock speeds have charactemed Vist technoioy Graphlcs
processors and displays have become far more sophisticated, thg ‘fise to major new applications such
as animation and multimedia. Magnetic disk storage densities and capacities have seen huge increases,
even as their cost, size and power consumption have been falling. And, with advances in electronics, signal
processing, and underlying communication technologies such as ﬁber oprics, ruly revolutionary advances
have been seep in system interconnect and network tedmo!ogpes. Hyper‘!’mnsport, PCI Express, Gigabit
Ethernet and 10 Gigabit | Ethemet are specnﬁc exarnpies _

The types of parallelism present in a program can be diwded brcadly into stmcmmi pamlfeh‘sm and
instruction level-poralielism (ILP}.-Processor- design: has - often been focused on exploiting ILF, but system
design—of a multiprocessor system, for example~has to be based on the type of structural paralielism
present in-the target applications. In this sense, the desagmrmustchaosebmmmreaggfmwe

-exploitation of ILP versus a larger number of processor: coresvdw Imaggmm exploiation of ILP.

The discussion of parafielism was continued-with a simple example, followed by 2 discussion of work

.done: by a paraliel algorichm; work-efficiency, efficient parallel: algorm'ms,and Brent's theorem. Stream
‘processing-is a newer form afpazauelﬁmwindtcan be exploited when the: target application—e.g.
- graphics, image or signal proc 'vdmmpmcewngafhmemmof&anm&e%mefdm-
'm%mdmwmﬁwpuwﬁ!umﬁowmm R

Many innovative high performance products—processors and systems—have emerged in recent years,
aimed at different target applications. Several representative products were discussed in this chapter in
the form of case studies. These included the Cray line of computers syszems and the Cray XT5 system;
PowerPC processor architecture, 1BM Power? processor and 1BM Blue Gene. supercomputer; Tilera’s
TILEM system-on-a-chip, Sun LHmSparcTz procusor,AMD Gptemn and Intel Pentium processors.

.. The parallel programming language Chapel, being developed by Cray under the prestigious HPCS
j:mgmn in'the US, was reviewed as an example of a global-view parallel programming language. For use
in’building parailel a?phcauons. comrent:onal pmgramming ianguages such as C, G++ and Fartran need
the support of function libraries for mterprocess ‘commuhication acnd syﬂchmnmuon Such libraries
use either shared mernory or message—passlng modeis as specuﬁc emmples. the salmnt feamres of MPl,

;openHPWH anﬂ’?hmds were dis:usseé

7

Problem 13.1 Explain in brief the meaning and  the basis of development of newer VLS| fabrication
significance of line width in VLS technology.What are  technology. Does your justification explain the ratios
the various line widths currently being used? of the line widths listed in answer to Exercise 17

Exercises

Problem 13.2 State and explain in brief Moore’s Problem 13.3 Faster clock speeds become
law. Justify this empirical law in brief, arguing on possible with advances in VLS! technology. What
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is the effect of faster clock speeds on power
consumption? Why is this an important issue in the
design of processors and computer systems?

Problem 13.4 Assume that a single processor
chip in a parallel system consumes 50 watts of power,
and that the system contains 1000 such processors.
Assume also that all other components in the system
consume, in aggregate, as much power as the 1000
processors.What is the total power consumption of
the system, in kilowatts? How many domestic irons,
operating together, will dissipate this much power?

Problem 13.5 For the system described in
Exercise 4, assume that air-conditioning and lighting
consume as much power as the computer system
itself, and that the cost of electric power is Rs, 6/-
per kilowatt-hour. What is then the monthly cost
of electric power for operating the system around
the clock?

Problem 13.6 In recent years it has been seen
that, beyond a point, processor performance does
not increase in proportion with clock speed. List
some of the trends in processor design resulting
from this basic factor related to VLS| technology.

Problem 13.7 What is off-chip inter-connect
delay? What is its significance in system design?

Problem 13.8 With advances in VLSI technology,
the total design cost of a VLS| processor has
increased enormously. ¥What has been the impact of
this increase on the way parallel processing systems
are designed?

Problem 13.9 Over the last two decades, with
advances in VLS| technology, processor speeds have
been increasing much faster than main memory
speeds. What has been the impact of this trend on
computer architecture?

Problem 13.10 A hand-held computing device
has to be provided with color graphics display
having a resolution of 300 x 400 pixels, with 3 x 8 =
24 bits of color information per pixel. The quality of
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animation to be provided requires refresh rate of
30 frames per second, and an average of 2 arithmetic
operations are required per frame per pixel.
Calculate the graphics processing power needed, in
millien arithmetic operations per second, for this
particular application.

Problem 13.11 List the three different ways in
which multiple disks can be used in combination
in a RAID system, and the corresponding benefits
expected in terms of the performance of the storage
system.

Problem 13.12 in parallel processing systems
with multiple processors, there has been a trend
away from shared media interconnects to switched
media interconnects. Explain briefly the reasons
behind this trend.

Problem 13.13 List the salient technical
characteristics of HyperTransport interconnect
technology, and describe in brief its possible
application in a multiprocessor system.

Problem 13.14 Llist the salient technical
characteristics of Low Voltage Differential Signaling
(LVDS), and the performance benefits which it
provides.

Problem 13.15 Contrast the salient characteris-
tics of PCl and PCl Express interconnect standards.

Problem 13.16 List the salient technical features
of Gigabit Ethernet, and explain in brief the meaning
and utility of the concept of Qualty of Service (QoS).

Problem 13.17 Describe in brief the concept, ap-
plications and benefits of cluster computing.

Problem 13,18 What do you understand by
structural paralfelism in a parallel program? List the
different possible forms of structural parallelism
which we have studied. Contrast this concept with
instruction level parallelism (ILP), and discuss whether
there are any trade-offs involved in processor and/
or system design between supporting these different
types of parallelism.
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Problem 13.19 Define in brief the meaning of
virtualization, and explain why this concept is closely
related to hardware support for multi-threading.

Problem 13.20 Example 13.2 discusses a two-
dimensional numerical integration. Outline how you
would extend this concept to three-dimensional in-
tegration, wherein a function f{xy.z) of three vari-
ables is integrated over a volume of integration de-
fined by limits Xmin, Xmax, Ymin, Ymax, Zmin and
Zmax along the three axes X,Y and Z respectively.
Justify the number of processors used in various
phases of the algorithm.

Problem 13.21 Define the work performed by
a parallel algorithm.When can we say that a parallel
algorithm is work-efficient with respect to another
algorithm? When is a parallel algorithm optimal?

Problem 13.22 Two versions of matrix multipli-
cation algorithm are shown in Example 1.5. Justify
these two versions as either being or not being op-
timal.

Problem 13.23 When do we say that a parallel
algorithm is efficient? Are the matrix multiplication
algarithms of Example 1.5 efficient?

Problem 13.24 State Brent's theorem. Explain in
brief its significance and underlying assumption(s).

Problem 13.25 List the characteristics of stream
processing using a schematic diagram of processing
kernels and data streams. List three typical applica-
tions of stream processing, and the stated goals of
the research project Merrimac at Stanford University.

Problem 13.26 Draw a block diagram and list
the salient features of the Fermi stream processor
introduced by Nvidia. List the advantages of using
a stream processor as against using ASIC(s) and
FPGA(s) for a given application.

Problem 13.27 Describe in brief the salient
features of:

{(a) Cray XMT supercomputer

{b) IBM Power7 processor
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{c) IBP Blue Gene supercomputers.

Problem 13.28 State in brief the salient features
of Cray XT5 supercomputer; draw a schematic
diagram of the 2D torus system interconnect,
showing the different types of nodes which are
connected.

Problem 13.29 Recall that PowerPC defines
a processor architecture rather than a processor
itself. List the salient features of PowerPC processor
architecture.

Problem 13.30 Describe the salient features
of Tilera’s TILE64 system-on-a-chip, and the use of
iMesh network to realize cache coherent NUMA
architecture. Draw the schematic block diagram of
a single tile.

Problem 13.31 A single processing tile in the
TILE&4 system does not involve very aggressive
exploitation of ILP. Justify why this is the right choice
in the context of the overall system design and the
typical target applications.

Problem 13.32 Using a block diagram, describe
in brief the salient features of the Sun UltraSparc
T2 processor. Is the processor more suitable for
intensive scientific and engineering computations,
or for commercial servers and virtualization? Justify
your answer in brief.

Problem 13.33 Describe in brief the salient
features of the AMD Opteron processor. Comment
briefly on whether such a processor should provide
hardware support for multi-threading.

Problem 13.34 Compare and contrast the
architectures of TILE64, Sun UltraSparc T2,and AMD
Opteron processors.

Problem 13.35 Using a block diagram, describe
in brief the salient features of Intel’s Pentium IV
processor. List the processor features designed for
exploiting [LP. What are micro-cperations? Why was
it necessary to introduce that concept in the VLS|
implementation of the processor?
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Problem 13.36 Parallel programming language
Chapel claims to support a global view of parallel
programming, Explain this concept in brief,
contrasting it with a fragmented view of paraliel
programming.

Problem 13.37 Explain in brief the concept of
domain and subdomain in Chapel, giving an example
of each. Show how a domain can be used in loop
control,

Problem 13.38 In parallel programming language
Chapel, describe in brief the functions of:

(a) begin, cobegin, coforall and on
statements,

{b) readFE and writeEF synchronization opera-
tions, and

{c) Atomic operations.

Problem 13.39 Describe in brief the salient
features of MPI, openMF, PThreads and PYM models
for implementing parallel processing applications.
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Problem 13.40 For a particular application,
processing must be carried out using a three-stage
software pipeline, as illustrated in Fig. 13.17. Note
that this modet of processing is justified if the ratio
of computation to communication is high.

In Fig. 13.17, Process A reads a record from a
database, and performs the first stage of processing
on it. It then sends the record to Process B for
the second stage of processing, and B then sends
the record to Process C. After the third stage of
processing, Process C writes the processed data to
another database. Each process works only on one
record at a time; in other words, multiple records
are not buffered in any process, and there is no
muiti-threading within any process.

Design and implement this system using MPL,

Problem 13.41 How will the system design
of Exercise 39 change if each process has a buffer
which stores N records? What are the likely benefits
of making this change?

Process A Process B Process C
Read Receive Receive Write
from meene Send TR to database
database

Fig.13.17 Schematic of application for Exercise 39







Answers to Selected Exercises

Provided below are brief or partial answers to a few selected exercise problems. These answers are meant for
readers to verify the correctness of their answers. Derivations or detailed computational steps in obtaining
these answers are left for readers.

Exercise 1.1  Average CPI = 1.55. Effective processor performance = 258 MIPS. Execution time = 3.87 ms.

Exercise 1.4
(a) Average CPI=2.24
(b) MIPS rate =178.6

Exercise 1.8
{a) Sequential execution time = 1664 CPU cycles.
{b) SIMD execution time = 26 machine cycles.
{c) Speedup factor = 64.

Exercise 2.5
@ (e 6
\
A
(b) S, and 85 need to use the same Store Unit in accessing the memory. Therefore they are potentially
storage-dependent,

Exercise 2,11
(@) |Network |d |D| ! {(dxDxI)" | Rank
Torus |66 1192 | 1/6912 2
6-cube |66 |192 1/6912 2
CCC 31996 1/2592 1

Torus 2.67
6-cube 2.67
CCC 3.67

(b) | Network | Mean Internode Distance | Rank
1
1
2
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Exercise 2.14

(a) A4 x4 switch has 256 legitimate input-output connections, 24 of which are permutations.

(b) A 64-input Omega network requires the use of 48 4 x 4 switches in 3 stages, with 16 switches per
stage. Interstage connections are 4-way shuffles, 24* permutations can be implemented in one pass
through the network.

(¢) The percentage of one-pass permutations equals 24% /641 = 1.4 x 1072

Exercise 3.2
(a) Effective speedup = 3. Vectorization ratio o= 0.75.
(b) New speedup = 3.43 with vector/scalar speed ratio = 18.
(c) a must be improved to 0.8,

Exercise 3.3
(a) MIPS rate = nx/[a+n(l - a)];
(b) a=096
Exercise 3.7
(a) Sequential execution time = 1,051,628 cycles.
{b} The speedup = 16.28.
(¢) Each processor is assigned 32 iterations balanced between the beginning and ending of the I-loop.
(d) The ideal speedup 32 is achieved.

Exercise 3.9

Machine Arithmetic Mean Harmonic Mean | Rank
Execution Time Execution Rate
A 4,00 us per instruction 0.25 MIPS
B 4,78 s per instruction 0.21 MIPS 3
C (.48 us per instruction 2.10 MIPS 1

Exercise 4.11
(a) Average cost ¢ = ()] + €282)/(s1 + 52).c = ¢ when 5, 5, and c;5; > 5.
(b) b, = hfl + (1 - h)tz.

_

h+(1-h)r

() h=0.99.

(c) E=

Exercise 4.15
(a) Hit ratio # = 16/33 for LRU policy.
(b) Hit ratio k = 16/33 for the circular FIFO policy.
(c) These two policies are equally effective for this particular page trace.

Exercise 4.17
(a) tep = 0.95¢, + 0.05¢,.
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(b) Total cost ¢ = ¢y8; + Ca89.
(c) s, cannot exceed 18.6 Mbytes, 1, = 420ns.

Exercise 5.12
@ L=filhict(1-h)b++1A-f)thg c+ (1 -h)((b+ )] - fi) + (2b + O)f)).
(b) t::t = ta + (l - ﬁ)ﬂnv i
Exercise 5,13
{a) MIPS rate = px (1 + mix);
(b) x =583 MIPS;
(c) Effective MIPS = 1524.

Exercise 5.17
(a} There are 20 program orders: abcdef, abdeef, abdecf, abdefc, adbcef, adbecf, adbefc, adebef, adebfc,
adefbc, dabeef, dabecf, dabefc, daebef, daebfc, daefbe, deabef, deabfe, deafbc, defabe.
(b) Possible output pattern: 0111, 1011, and 1111. '
(c) Possible outputs are: 1001, 1011, 1101, 0110, 0111, 1110, and 1111.

Exercise 6.1 Under the favourable assumptions made, the time taken to initially fill the pipeline (i.e. 5 clock
cycles) is a negligible fraction of the total execution time. Therefore the speedup, efficiency and throughput
of the processor aimost equal 5, 1 and 1000 MIPS, respectively.

If we assume that the pipeline is flushed after every 100 instructions (on average), then 5 clock cycles
are lost out of every 100, leading to a 5% loss in speedup, efficiency and throughput; in this case, the three
answers are 4.75, .95 and 950, respectively.

Clearly the loss in speedup, efficiency and throughput will be greater if the pipeline is flushed more
frequently, e.g. after every twenty instructions on average.

Exercise 6.9
(a) Forbidden latency is 3 with a collision vector (100).
(b) State transition diagram is shown below:

(c) Simple cycle: (2), (4), (1.4), (1,1,4), and (2.4);
(d) Optimal constant latency cycle: (2), MAL = 2.
(e) Throughput =250 MIPS.
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Exercise 6.15
(a) Speedup factor = 3.19:
(b) 62.5 MIPS for processor X and 199.2 MIPS for processor Y.

Exercise 6.17
(a) The four stages perform: Exponent subtract, Align, Fraction Add, and Normalize, respectively.
(b) 111 cycles to add 100 floating-point numbers.

Exercise 7.1
(a) Memery bandwidth = mc/(c + m)t =533 million words per second.
(b) Memory utilization = cm/(c + m) = 5.33 requests per memory cycle.

Exercise 7.4 A minimum of 21 time steps are needed to schedule the 24 code segments on the 4 processors,
which are updating the 6 memory modules simultaneously without conflicts. The average memory bandwidth
is thus equal to 70/21= 3.33 words per time step, where 70 accounts for 70 memory accesses by four
processors in 21 time steps without conflicts.

Exercise 7.14
{a) (101101) — (101100} — (101110) — (101010) - (111010) - (011010)

(b) Use either a route with a minimum of 20 channels and distance 9 or another route with a minimum
distance of 8 and 22 channels.

(¢) The following tree shows multicast route on the hypercube:

{1010} Source

/\

(0010) {(101)

(0000) (0011) (1111)

1

1101)

o
purd
ey
=y
—
—

}K

{0181) (1001) Note: The destinations are underlined

Exercise 8.12
(a) R, =2000/(10 — 90, in Mflops;
(b) Vectorization ratio &= 26/27 = 0.963;
(¢} R, =700 Mflops.

Exercise 8.13
(a) Serial execution time = 190 time units.
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(b) SIMD execution time = 35 time units.

Exercise 8.14

(a) C90 can execute 64 opreations per cycle of 4.2 ns, resulting a peak performance = 64/4.2 x 107" =
15.2 Gflops.

(b) Similarly NEC has a peak performance of 64/2.9 x 10~ = 22 Gflops.

Exercise 9.1

() E=1/(1+RL).

(b) B'=(1- MR E=1/(1+RKL)= [l +RL(1 - K)].

1 I

c) While N2N;= +1, = = .

© VR +C “ 14CR" 1+(-hCR
While NS N,y Bjo= — 8 N _ = N .

VR +C+L 1+RC+RL 1+(-h(L+OR

(d} The mean internode distance D = (r + 4)/3.

2wray _2p+d)
3

Thus L=2Dt,+1¢, = bt by = =7 tat 1y,
_ VR !
VYR +C 1+(-hCR
N N

Ejin

1+ (-WRL+C) |
1+(1- h)R{[EL[I;JF—“)td + 1, ] + C]
Exercise 10.5

(@) A(5,8: *,*) declares A(5,8,1), A(5,9.1), A(5.10,1), A(5.8,2), A(5,9,2), A(5,10,2), A(5,§,3), A(5,9,3),
A(5,10,3), A(5,8,4), A(5,9.4), A(5,10.4), A(5,8,5), A(5.9.5), A(5,10,5). B(3:*:3,5:8) corresponds to
B(3,5), B(3.6). B(3,7), B(3,8), B(6.,5), B(6.6). B(6,7), B(6.8), B(9.5), B(9,6), B(9,7), B(9.8). C(*,3,4)
stands for C(1,3.4), C(2,3,4), C(3,3,4).

{b) Yes, no, no, and yes respectively for the four array assignments.

Exercise 10.7
(@ 51> & 5
(b) 5,: A(I:N)=B(:N)
§3:  E(I:N)=C{(2:N+])
8: CLN)=A(Q:N)+B(I:N)
Exercise 10.12
(a) Vectorized code:
TEMP{1:N) = A(1:N)
A(2:N + 1)=TEMP(1:N) + 3.14159
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(b) Parallelized code:

Doalll=1,N
If (A(D) .LE. 0.0) then
S=S+BI*CD
X =B
Endif
Enddo

Exercise 11.15
(a) Suppose the image is partitioned into p segments, each consisting of s = m/p rows. Vector histog is
shared among the processors. Therefore its update has to be performed in a critical section to avoid
race conditions. Assume it is possible protect each element of vector hisfog by a separate semaphore.
The following program performs paralle] histogramming:

Var pixel(0 :m—1,0:n -1}

Var histog(0 : - 1): integer;

Var lock(0: 5 1): [0,1];

histog(0 : - 1)=0;

lock(0:6-1}=1;

for k=0 until p — 1 0 Doall
fori=kxsuntil(k+1)xs—1de

for j =0 until » — 1 do

P(lock(pixel{i, /)
histog(pixel(i, j)) = histog(pixel{i, )) + 1;
V(lock(pixel(i, /)));
Enddo
Enddo
Endall

(b) The maximum speedup of the parallel program over the serial program is p, provided there is no
conflict in accessing the histog vector and the overhead associated with synchronization is negligible.
An alternative approach is to associate a local histog vector with each processor, which will obviate
the use of critical sections. At the end of the algorithm, the values in local histog vectors are added to
obtain the final result.

Exercise 12.9

Note: The aim in Chapter 12 has been to understand instruction level parallelism without reference to a
specific processor design. The stipulation of counting from the last clock cycle of instruction 1 has been added
to these exercises so that the instruction sequences can be analyzed without reference to a specific processor
pipeline design. Thus the answers we derive do not include the initial pipeline fill time, and we count only the
additional clock cycles needed to complete each instruction. .
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Sequence 1: 1 LOAD mem-a, R1
2 LOAD mem-k, R2
3 LOAD mem-c, R3
4 FADD R2, R1, R1
5 FSUB R3, R1l, Rl

6 STORE mem-a, Rl

The directed graph of dépendences is shown below:

RAW(R1)

Exercise 12.10 Here we assume that the processor has no provision for register renaming and operand
forwarding, and that all memory references are satisfied from L1 cache.

In the absence of operand forwarding, every RAW hazard causes (at least) one lost clock cycle, as the
operand value is first written into the register and then, in the next cycle, brought to the functional unit or
load/store unit, _

Instruction 3 can be executed in parailel with instruction 4 (FADD).

We therefore add the additional clock cycles required for the rest of the instructions (other than instruction
3), and add one cycle penalty for every RAW dependence occurring along the dotted path. Thus the number
of cycles needed (from the last cycle of instruction 1) equals:

1+1+2+2+1+3*1=10

Exercise 12,11  Effect of register renaming:
No WAR or WAW dependences are affecting the computation, and therefore register renaming will not yield
any additional parallelism in this particular instance.

Exercise 12.12 and 12.13  Effect of operand forwarding:

With operand forwarding, the FPU or memory store unit receives its required operand value in the same cycle
in which it is written in the register. Therefore the three cycles lost due to RAW dependences are saved, and
the answer is:
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I+1+42+2+1=7

Exercise 12.14 Effect of L1 cache miss, requiring L2 cache access of 5 clock cycles:

L1 cache miss on instruction 1 or 2 will cost 5 — 1 = 4 additional clock cycles each.

L1 cache miss on instruction 3 will cost 5 — 2 = 3 additional clock cycles, since 2 cycles out of five are in
parallel with FADD of instruction 4.

Exercise 12.15 Outline of Tomasulo's algorithm: For every possible source of an operand within the
processor, assume a tag value. For example, assume a tag value of TFPU for the output of FPU, and TLOAD
for the output of memory load unit,

For every RAW dependence, if the operand value is not available, the algorithm requires the source tag
value to be written into the destination tag register. When the operand value is available on the CDB (along
with the right tag value), it is copied into every destination register where it is required, i.e. where the source
and destination tag values match. :

However, in this case the memory load unit requires special care, since its successive outputs from
instructions 1, 2 and 3 go (respectively) to the two inputs of FPU for instruction 4, and then again an input of
FPU for instruction 5. One way to handle this would be to assign multiple tag values to the output of memory
load unit, and use different values for the three load operations of instructions 1, 2 and 3.

Exercise 13.39 and 13.40 Note that the first two processes make up one producer-consumer pair, and the
last two processes make up another producer-consumer pair. Process B consumes the records produced by
process A, and process C consumes the records produced by process B. The solutions require two applications
of the standard producer-consumer algorithm. '
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