Trends in Parallel Systems

In the earlier chapters of this book, we have studied the many architectural concepts which had been
proposed and tried out until the early 1990s. In Chapter 12, we studied in some detail the basic issues
related to instruction level parallel:sm {ILP), and the various techniques which have been developed to
exploit ILP in the running program.

We shall now use that knowledge as a foundation to understand subsequent developments in computer
architecture, in the light of the technological advances which have taken place over the last two decades.
Of course this fairly brief chapter about the recent advances cannot possibly be exhaustive—but we do
hope that it is representative enough to bring out the recent trends in computer architecture.

Over the last two decades, the hardware technologies that provide the building blocks of computer
architecture have advanced almost beyond recognition. in Section 13.1, we shall take a brief look at these
developments in technology, so as to understand the driving forces behind the recent developments
in computer architecture. We feel that the recent innovations and advances in computer architecture
cannot be studied in isolation of these technological factors. '

In Section 13.2, we review in brief the types of parallelism which may be present in a program, and
discuss the concept of efficient and work-¢fficient parallel algorithms. The concept of work-efficiency
enables us to determine whether a given parallel algorithm has efficiency which is comparable to that
of another known algorithm for the same problem.We aiso introduce the concept of stream processing,
which can provide very high performance for certain specialized data-parallel applications.

In Section 13.3, we take a look at case studies of some recently introduced commercial processors
and systems, which incorporate innovative designs based on the latest advances in technology and
architectural concepts. In Section 13.4, we discuss current trends in parallel program development
languages and techniques.

 BRIEF OVERVIEW OF TECHNOLOGY

In electronics, VLSI, mass storage, and communication technologies, tremendous advances
have taken place over the last two decades, which have shaped the resulting advances in
processor and system architecture. In this section. we take a brief overview of these basic technological
advances, so as to prepare the ground for case studies of some of the recently announced processors and
systems. In sub-sections 13.1.1 through 13.1.4, respectively, we discuss semiconductor technology, display
technology, storage technology, and interconnect and network technology.

630" i Advanced Computer Architecture

13.1.1 Semiconductor Technology

Over the last several decades, steady advances in very large scale integration (VLS]) technology have led
to a steady exponential-rate growth in the number of transistors which can be fabricated on a single chip.
Present day technology allows well over a billion transistors to be fabricated on a single chip. Advances in
VLSI technology have had a major impact on computer system architecture, giving rise to possibilities such
as multi-core chips and system-on-a-chip.

The basic parameter which determines the size of a transistor on a chip is the minimum line width supported
by the fabrication technology—i.e. the width of the smallest feature which can be fabricated on the chip.

With better and better processing technoelogy, line widths producible using VLSI fabrication technology
have been shrinking steadily. Sub-micron technologies became possible by the early 1990s, i.e. line widths
of under a micron, which is 1000 nanometers (nm). Less than two decades later, we now have line widths
of 65 nm, 45 nm, and even 32 nm, enabling the production of chips with over a billion transistors on them.

Gordon Mcore was one of the founders of Intel Corporation, which is today the world leader in
semiconductor technology and the largest manufacturer of semiconductor devices. Based on his intimate
knowledge of VLSI design and fabrication technologies, Moore formulated an empirical law in the mid-
1980s which states that: The number of transistors which can be fabricated on a single chip doubles every
two years.

One way to understand the logic behind Moore’s law is as follows:

(i) When a company embarks on developing ‘the next generation’ of chip technology, it typically aims
for doubling of the device density on the chip. Since the area occupied by a device on the chip is
proportional to the square of line width, the design target for the line width must be about 142 of the
line width currently achieved. This approximate ratio explains the line widths of 90 nm, 65 nm, 45 nm
etc. of current technologies.

(ii) The time period mentioned in Moore’s law—two years—equals roughly the design and development
cycle associated with the newer fabrication technology needed.

Faster clocks also become possible with improved technology; however, beyond a point, the power
consumption of the chip rises disproportionately fast with clock speeds. Also, a faster processor clock requires
an increased number of stages in processor pipelines. But there is a limit beyond which the number of such
stages cannot be increased, because each additional pipeline stage introduces its own overhead.

In recent years, processor clock speeds have reached as much as 4 gigahertz, but it is seen that processor
performance does not scale with clock speeds. One reason behind this is that the relative cost of a cache miss
is greater at higher processor speeds.

In view of factors such as these, there has been a relative leveling off in processor clock speeds in recent
years, while greater attention is given to how best to design the chip to utilize the enormous number of
transistors on it. Apart from the exploitation of ILP discussed in Chapter 12, multi-core processors, systems-
on-a-chip, stream processors, and larger two-level on-chip cache memories are other examples of resulting
architectural developments.

Trends in Parallel Systems _— 631

An important consequence of high density chip designs and faster processor clocks is the following:

Off-chip interconnect delays play a major role in determining system performance. The approximate speed
of an electronic signal over a wire in a computer system is 20 centimeters (cm) per nanosecond. If an off-chip
connection has a length of 10 cm, for example, the associated delay is 0.5 ns, which is as much as half of a
clock cycle of a 1 gigahertz clock, or one full cycle of a 2 gigahertz clock.

Given that a large number of transistors can be fabricated on a chip, it follows that huge performance
benefits can be derived by integrating system functions on a chip, even if it is not possible to continue to
push clock speeds higher. Another outcome of these technological factors is that system performance is more
easily enhanced by employing multiple processors, than by pushing a single processor to its technological
performance limits.

In the case studies which we shall consider later in this chapter, we shall see how different manufacturers
have designed innovative high performance systems, keeping in mind the basic constraints of the underlying
technology. We shall also see that today the most powerful computer systems in the world—such as Cray XT
and [BM Blue Gene!'l—are based on the concept of massively parallel processing.

Another important effect of modern VLSI technology on computer architecture ensues from the economics
of chip design.

Design costs associated with modern high performance processors are very high, which means that larger
production quantities are needed to justify these costs, Therefore computer system architects today are more
likely to make use of commercially available processors which are in volume production—i.e. commodity
processars—while relying on innovations in system design to deliver higher performance. In fact massively
parallel systems have been developed precisely to exploit the enormous amount of aggregate processing
power which can be provided through the use of a large number of high-performance commodity processors
operating in parallel.

In the case studies presented in Section 13.3, we shall see that advances in VLSI technology—which have
been touched upon very briefly here—have had a major impact not only on processor designs but also on
overall system architecture.

Semiconductor Memories Dynamic random access memory (DRAM), which provides the bulk of main
memory in computer systems today, is also subject to Moore’s law, i.e. doubling of transistor count on a
single chip every two years. This means that a single memory chip today can store hundreds of megabytes of
memory, and computer systems today are provided with main memories which are three orders of magnitude
larger than in the early 1990s.

However, over the years, memory speed increases have not kept up with processor speed increases.
Processor speeds have been increasing at a rate of over 50% per year, whereas memory speeds have been
increasing at a rate of less than 10% per year.

Typical processor clock periods in the early 1990s were of the order of 25 nanoseconds, and memory cycle
times of the order of 200 nanoseconds. Today these two numbers would be of the order of 1 nanosecond
and 50 nanoseconds, respectively, which shows that, relative to processor speeds, main memory speeds are
slower today. In such a system—unless something is done about it—the processor would see fifty idle clock
cycles for every memory access on a cache miss, which is clearly not acceptable.

[T AH the product numbers and names used in this chapter are registered trademarks of the respective corporations named.

632 tniine Advanced Computer Architecture

This means that the cost of a cache miss, counted in terms of number of processor cycles lost, is greater
today than it was in the early 1990s. To put in another way, cache miss rate would have greater impact on
processor throughput today than it did earlier.

In terms of computer system performance, this means that designers today have to rely on more innovative
memory latency hiding techniques. We have already seen that multi-level caches, out-of-order instruction
execution, and hardware multi-threading are some of the latency hiding techniques available to the system
designer.

Even with various latency-hiding techniques, the memory sub-system must be capable of storing and
delivering data at the required rates. Double data rate (DDR) devices, wider data paths, interleaving, and
integrated L3 cache are some of the techniques employed for this purpose. High performance systems also
employ memories with error correcting codes (ECC) to protect against randorm, one-off errors.

13.1.2 Display Technology

Graphics display technology has made huge strides since the mid-1990s—when LCD displays were virtually
unknown, and high resolution CRT displays were only available on expensive workstations. In terms of each
of the foliowing performance features, graphics displays have made huge advances over the last couple of
decades:

+ pixel density,

= range of colors,

* contrast,

« refresh rate, and

» viewing angle (applicable 1o LCL) displays).

With the help of specialized graphics controllers and high data rate interconnects, modern systems support
animated graphics of amazing quality.

These developments have opened up the vast and entirely new area of multimedia applications, ncluding
animated graphics and sophisticated gaming —applications which were not possible a couple of decades
carlier. Sophisticated image processing is also now made possible by utilizing the same processing and
display capabilities.

At the same time, graphical interfaces have changed the ways in which users interact with the application
programs. Compared to the earlier days of DOS and UNIX command lines, user interaction with the computer
has been transformed with the help of windows, pointing devices and imaginative graphics.

Graphics controllers implement functions of the graphics rendering pipelines. which require repeated
computations on sequences of integer or floating point operands. These numerical operands represent the 2D
or 3D image which is being displayed, and the numerical operations carried out on them represent commeon
graphics operations such as projection, clipping, scaling, rotation, and so on.

Computer graphics and image processing are highly specialized subjects, and it is not possible to delve
into these subjects at this stage. But the processing and data transfer requirements of dynamic graphics do
have a bearing on computer architecture, as the following example will illustrate.

Trends in Parallel Systems .. 633

b

Consider a display of 1000 x 1200 pixels, with 24 bits of color information per pixel, i.e. 8 bits for each of the
three primary colors; assume that the display has to be refreshed 60 times per second for animated graphics.
Then the aggregate data transfer requirements to the display can be calculated as:

1000 x 1200 x 24 x 60 bits/second = 216 MB/s.

Example 13.1 Graphics display: processing requirements

In a graphics system, all the subsystems—main memory, processor, graphics processor, as well as all the
data paths —must support the required data rates.

For each pixel, display intensities of the three colors must be calculated. Let us assume this requires a
hundred arithmetic operations per second on average, which may be integer or floating point operations,
depending on system design. This figure is used here for an order-of-magnitude calculation; a more precise
calculation requires details of the rendering process, and there would be potential parallelism in these
operations.

Then the graphics processing power needed in this system is of the order of:

1060 x 1200 x 100 operations/second = 120 million operations per second.

Note that this processing power must in general be provided using the appropriate hardware technology,
e.g. a pipelined graphics processing unit (GPLU).

In a graphics or image processing system, all praphics data points are put through essentially the same
sequence of arithmetic operations. Because of this, graphics processing has given rise to variants of SIMD
architecture.

One such variant is today provided even on PCs of modest cost in the form of streaming SIMD extension
to the Intel x86 instruction set (SSE, see Section 13.3.5). As another example of the impact of graphics
and image processing on system architecture, we shall study the concept of stream processing (see
Section 13.2.4).

Requirements of graphics processing have a major impact on the rest of the system design also, in terms of
the storage, processing, networking, and 1/O capability required. Multimedia tratfic forms a major component
of all Internet traffic, while the design of sophisticated video game consoles must also take into account the
aggregate graphics processing requirements.

13.1.3 Storage Technology

Since the early 1990s, mass storage technology has witnessed technology innovations resulting in steady
advances in the following respects:

+ greater storage densities,

+ smaller form factors, ;
= lower power consumption, and

* reduced costs.

634 e Advanced Computer Architecture

Another significant technology innovation has been the development of flash memories, which are non-
volatile solid state mass-storage devices.

As in the case of semiconductor devices, magnetic disks have also benefited from steady improvements
in materials, processing and manufacturing technology. In addition, there have been breakthroughs—such
as the use of giant magneto-resistive (GMR) effect, which has helped shrink the size of the read/write heads.
Today, magnetic disk drives are available in 3.5” form factor with capacity 1 TB (1 Terabyte, i.e. 10° MB).

In addition, storage systems such as redundant array of independent disks (RAID) have been developed
to make available on computer systems huge amounts of online disk storage, wherein a large number of
physical drives appear as one logical storage unit. In a RAID storage system, the drives built into the array
can provide the advantages of faster data access, error recovery, and/or fault tolerance.

To the operating system, a RAID storage unit appears exactly as one logical disk. The muitiple physical
disks in a RAID storage system may provide a combination of:

(i) Data striping—i.e. the data to be stored is distributed across multiple disks, so that it can be read or
written in parallel across the disks, resulting in faster performance.
(ii) Data mirroring—-all the data to be stored on one drive may be mirrored on another, so that operations
continue uninterrupted even after a single disk failure.
(ili) Parity—for every m > 2 physical data disks, an extra physical disk may be used to store parity
information calculated for the m data disks; in case of any parity violation detected, the system is in a
position to provide error recovery.

These strategies can be combined. For example, one can have a redundant pair of striped disks, or a striped
pair of redundant disks. Standards have been developed defining the various RAID configurations which are
used to meet specific system objectives.

RAID features can be implemented in hardware, in which case the operating system views a RAID system
just as it views any other disk drive. Alternatively, RAID features can also be implemented in software, in
which case they make up the lower layer of the disk space management software.

However, even in the midst of rapid technological advances, one fact has remained unchanged over
the years: Applications of computer systems invariably grow to stress and stretch the limits of available
technology. We have already seen this to be true in the case of semiconductor and graphics technologies.

In the case of magnetic disk drives, the story is no different. Over the years, the data storage requirements
of applications have grown exponentially. A large component of this storage is today cyberspace—i.e.
millions of gigabytes of information made available to users around the world through the world wide web.
In actual fact this cyber-space resides on thousands of server farms, each of which contains a large number
of disk drives; this data is made available on the web through web servers. :

Magnetic disk storage has traditionally provided far higher storage densities than non-volatile semiconductor
EEPROM? storage. However, in recent years, storage densities of semiconductor flash memories—a form
of EEPROM—have increased significantly, leading to their increased use with compact and mobile devices,
where they offer a better alternative to magnetic disks. Unlike the original EEPROM devices, flash memories
provide access to stored data on a block-wise basis.

Being semiconductor devices, such memories also benefit from the steady technology improvements
summarized in Moore’s law. The availability of high-density non-volatile semiconductor memoties means
that so-called solid state drives are now available, which can be used in place of magnetic disk drives. These

el Electrically erasable programmable read-only memory.

Trends in Paralfel Systems . 635

drives offer the advantages of higher throughput, lower latency, lower energy consumption, robustness and
durability. It is likely that, in the coming years, solid state drives may replace some of the rotating magnetic
disks as secondary storage devices.

13.1.4 Interconnect and Network Technologies

Within a computer system, the processor-memory and inter-processor interconnects, as also the data paths
to network and device controllers, must sustain the data traffic rates needed for a given aggregate system
performance. Latencies associated with the data paths also play a role in determining achievable system
performance.

Modem supercomputers, data centers and server farms rely on high performance and high availability
computing infrastructure in which interconnects play the crucial role. An interconnect within a computer
system may span a single chip, a circuit module (or board), a single rack consisting of many circuit boards,
or multiple racks spanning a distance of a few meters or few tens of meters. Thus an interconnect may be a
nerwork on a chip (NoC), a system area network (SAN), or something intermediate. Beyond the range of a
system area network, a local area network (LAN) or a wide area network (WAN) is needed to interconnect
systems into larger systems.

Within a system, with a larger number of processors being connected, there has been a shift from
performance-limiting shared media interconnects—e.g. shared processor-memory bus—towards packet-
based switched media interconnects, which make use of point-to-point links and routers. Such systems
support higher aggregate bandwidths, and protocols for them are specially designed with low overheads and
latencies.

HyperTransport An example of a high performance interconnect which has been developed to meet such
system requirements is HyperTransport (HT)"'—a point-to-point interconnect technology which is packet-
based, scalable, and has low latency. HT Technology Consortium, consisting of several major hardware
vendors, published the first version of this standard in 2001, while the latest version 3.1 has been published
in 2009,

A useful feature of HT is that the command/address/data path width can be selected by the system designer
to be 2, 4, 8, 16 or 32 bits™*, The latest version of HT supports a maximum clock speed of 3.2 GHz and
aggregate data transfer rates of up to 51.2 GB/s. The HT link can be directly provided on the processor/core,
without requiring a separate interface device. The packet-oriented data transfer protocol is designed for low
overhead and provides fast /O interrupt processing, error retries and virtual channel support.

For achieving the high switching speeds needed, HT relies on the underlying physical layer based on the
Low Voltage Differential Signaling (LVDS) standard®!, which offers advantages of low power consumption,
higher speed, and the immunity to noise and interference which characterizes differential signaling.

Basic circuit theory tells us that a capacitive load can respond instantaneocusly to a step change in current,
but not to a step change in voltage. The effective load in system interconnects—within a chip, or between
chips on a circuit board—is capacitive, and therefore a current-driven signaling scheme can support faster
data rates.

Bl See hitp/iwww. hypertransport.org
U pCI Express also provides a similar design option. See below.
Bl See LVDS Owner s Manual, 4° edition, published by National Semiconductor, 2008.

634" kil Advanced Computer Architecture

Consider the basic circuit shown in Fig. 13.1, in which a digital signal—i.e. a step change in current—is
being communicated by the driver to the receiver. Clearly, the direction of current through the pair of wires
(known as current loop) depends on whether transistors A & D or B & C are tumed on.

“current loop”

A B .

— - E v

1 Ay
¥ “

3.5mA) - | AV

current 1‘ T /
source !
1000 &

C D

5 =

Driver Receiver

Fig.13.1 Low voltage differential signaling (LVDS)

Across the 100 terminating resistance, the 3.5 mA current source generates a voltage drop AV of
350 mV, given that any common mode voltage gets rejected in the differential arrangement. Data is recovered
at the receiver from the sequence of changes in the polarity of this voltage.

PCI and PCI Express["] Peripheral Component Interconnect (PCI) local bus standard was developed by
Intel in the early 1990s for the relatively higher performance PCs then emerging-—which were using, for
example, Intel’s own Pentium processors. The standard provides for device adaptors as IC chips on the
motherboard, or as add-on cards in sepatate slots.

The original 32-bit version of PCI ran at 33.33 MHz clock speed, to deliver net data transfer rate of 133
MB/s. Later versions of PCl utilized x 2 and x 4 clock frequencies with proportionately faster data rates. The
standard was extended for 3.3 volt operation, in addition to the original 5 volt definition, and a 64 bit version
was also defined. '

The PCI local bus can have a number of devices connected to it which can operate as bus masters. In
case of multiple requests, a bus arbiter grants control to a single master; a pair of request/grant signals are
provided for this purpose. The bus also includes address-cum-data lines and interrupt lines. Data transfer is
carried out via zransactions—in which an address phase is followed by data phase; read or write operations
take place with respect to either memory address space or a separate 1/0 address space.

PCI has proved to be immensely successful, and has been introduced in several variants and form factors.
It continues to be widely used in PCs, even after the enhanced and higher speed PCI Express standard was
introduced in 2004.

PC] Express was introduced as a collaborative effort by Intel and other computer vendors in 2004. In spite
of its similarity of name with PCI, it represents a radically different approach to system interconnects. PCI

] See http.//www,pcisig.com

Trends in Parallel Systems - 37

Express relies on serial, point-to-point links with message-based protocol implemented at the transaction
layer. As a whele, a PCI Express based interconnect operates a set of independent and parallel point-to-point
links, rather than the shared parallel bus of PCI. High speed graphics 2nd storage devices which cannot use
PCI are candidates for the use of PCI Express.

Over each pair of wires making up a single unidirectional link, current mode signaling is used to achieve
data rate of 250 MB/sec in PCI Express v1.x, 500 MB/sec in v2.x and ! GB/sec in v3.x. A pair of links make
a bidirectional /ane, and multiple (2, 4, 8, 12, 16 or 32) lanes can be configured together to achieve higher
data rates, depending on the data transfer speed requirements of a device. Data carried over multiple lanes is
striped, in the sense that in one transaction successive lanes carry successive bytes of data.

All data and control signals such as interrupts are sent as messages over the lane(s), rather than by using
dedicated signal lines as in earlier systems (including PCI). The message based protocol uses CRC for error
detection, and lower level ACK/NAK packets to signal message receipt or non-receipt {e.g. due to time-
out); flow control for outstanding messages is provided at the transaction layer. Compared to PCI Express,
HyperTransport (discussed above) uses a lighter, lower-latency message protocol.

As important as interconnect technology within a system is the local area and wide area networking
technology which allows computer systems to corumunicate at high rates, even though they may be located
half way around the world.

Today computer systems around the world are networked together in a way that could not even be imagined
in the mid- 1990s. Users have become accustomed to transferring huge amounts of data across the world at the
press of a key, and most commercially important applications of computer systems rely on the availability of
reliable, high bandwidth networks detivering services across much of the world.

When any type of data-—numerical data, text, pictures, sound or video—is transferred between two or
more computer systems, the quality of the underlying computer network is crucial in determining the overall
system performance. Performance of a network link between computers is judged in terms of the bandwidth
available, latency, and error rates. Of course errors can occasionaily occur on links, and for this the network
links provide for some form of error recovery. Performance of a network connecting two end-to-end systems
can also be judged using essentially the same criteria.

Over the last decade. use of optical fiber technology has brought about a revolution in communication
networks spanning the world. Achievable bandwidths have been rising, while costs have been coming down
and the overall network reach has been increasing steadily. This has brought about a revolution in the type
and range of applications which are being deployed and used routinely—applications which did not exist
even a decade ago.

Gigabit Ethernet and Cluster Computing Ethemnet, originally developed by Xerox Corporation, is the
most widely deployed Local Area Network (LAN) around the world. IEEE Ethernet standard covers bottom
Layers 1 and 2 of the seven-layer ISO protocol. The original standard, based on CSMA/CD technology,
provided a speed of 10 Mbps; later Fast Ethernet with 100 Mbps speed became available. All along, Ethernet
has proved to be an inexpensive, reliable, scalable and easily upgradeable LAN technology, leading to its
huge adoption rate for local area networks and campus networks.

As processing power grows in the servers and user computers connected to a LAN, and as applications
such as multimedia applications demand more bandwidth, the total traffic demands made on local area

networks also increase.

635 . Advanced Comprter Architecture

In the late 1990s, IEEE defined the 1000 Mbps Ethernet standard—known as Gigabit Ethernet——first
for fiber optic cables, and later over CAT-5 copper cables. Initially, it was envisaged to be used for network
backbone, in the data center, and amongst the various traffic aggregation points in the network. But today
it can also be provided on a user PC or workstation. The technology is defined by relevant parts of IEEE
Standard 802.3.

The copper cable version of Gigabit Ethernet uses four pairs of standard Cat-5 cables, and explicit flow
control amongst switches and adaptors, rather than CSMA/CD. Copper cables can be used over shorter
distances, up to 100 m. Optical fiber cables can be used for longer distances, up to a few kilometers.

When multimedia applications share the same network as data intensive applications, the issue of network
Quality of Service (QoS)m for each application becomes important; this can be seen from the following

argument:

(i) A streaming video session needs timely delivery of data to avoid jitter, but it can tolerate occasional
data errors.

(ii) On the other hand, for transfer of financial data, for example, absolute integrity is the prime concern,
while some delay in delivery may be acceptable.

Thus different applications make different demands on the network for the required QoS; Gigabit Ethernet
has been defined with the required support for the QoS concepts to be implemented over it. It should also
be noted that, after Gigabit Ethernet, newer 10 Gigabit Ethernet technology has also now become available.

Availability of low-cost personal computers, high speed interconnects (such as InfiniBand and Gigabit
Ethernet), and the use of the robust message-passing model to support concurrent processing have given rise
to the popular and powerful Cluster Computing concept.

A cluster computer offers a low-cost alternative to supercomputers for obtammg higher processing
power by interconnecting a large number of processing nodes. Technically, in terms of Flynn’s original
classification, Cluster Computing must be classified as multiple instruction-stream, multiple data-stream
(MIMD) architecture, since each computer executes its own program. However, for a given application, if the
same program is running over all the computers in the cluster, the processing is in single program, muitiple
data-stream (SPMD) mode.

The basic objective of employing a computing cluster may be high performance, high availability (i.e.
ability to continue operating after a failure), or a combination of the two. High availability is made possible
by providing redundancy in the system.

For example, a two-computer cluster, with both running the same database server, will provide higher
availability than a single computer running the database server. On the other hand, for faster response to
database queries, the database must be partitioned between the two interconnected computers running in
parallel.

Partitioning and redundancy are two independent strategies—either or both may be adopted, depending
on cost-benefit analysis. In the above example, if redundancy and partitioning are both needed, a total of at
least four computers must be clustered.

! For a detailed discussion of this and related concepts, see for example Computer Networks, by Andrew Tanenbaum,
fourth edition, Pearson Education.

Trends in Parallel Systems - 539

For scientific and engineering applications, clusters of thousands of inexpensive computers have been
built. However, programming them for a range of applications, and achieving peak theoretical performance,
both remain challenges for the designer.

Beyond the cluster, Internet is now a world-wide phenomenon that is changing the world. Web-based
applications, repositories of knowledge, and social networking have resulted in the creation of the vast
cyberspace. With the use of the message-passing model, a network application runs correctly even though
the respective clients and servers may be distributed around the world, although of course the response time
seen by the user is dependent on the quality of the network links being used.

The message-passing model works equally well even amongst the multiple processors making up a single
high performance computing system, being in this sense quite robust with respect to relative processor and
communication speeds. Thus, with high performance interconnect and network technologies, newer models
of parallel and distributed applications have evolved, enabling the enormous range of applications we see
today.

Note 13.1

At this point, it is interesting to take a brief backward look at the kind of systems which were in use
about fifteen years ago. Even this brief backward look makes clear the huge advances which have taken
place in computer technology in the intervening period.

In the mid-1990s, the processors used in popular PCs were Intel 80386, 80486 and compatibles,
running at clock speeds of at most a couple of hundred megahertz. Microsoft Windows 3.1 ran
optionally on top of good old DOS.

The popular word processing software of those days was WordStar, and the commonly used
spreadsheet software was Lotus 123, which had replaced VisiCalc. Microsoft Office was not yet
available. While UNLX was in fairly common use, LINUX had not yet made its appearance.

LCD displays were not yet widely available, and there were no laptop PCs available as products.
Spread of the Internet was very limited, and it was mostly used through UNIX-based programs such as
usenet and fip. The worldwide web was virtually unknown at the time, being in its stage of infancy, and
therefore there were no web-based applications. Object-oriented programming with C++ was slowly
gaining ground, while JAVA had not yet been introduced.

In the mid-1990s, there were no multimedia applications, no easy downloads of music or video files,
and video games were of limited capability. The common local area network was based on 10 Mbps
Ethernet, with Novell Netware!®! providing basic file storage and sharing services over the LAN.

From this brief summary, the amazingly rapid advances in computer technology over the last fifteen
years become quite evident. In Sections 13.1.1 to 13.1.4, we have tried to identify some of the drivers
of these advances.

et

We review in this section the main forms of parallelism which can be provided in a parallel
processing system, relying on a basic division of parallelism between structural parallelism—

51 An eatly product from Novell which was hugely successful in the market. For their more recent products, see http://
www.novell.com.

640" N Advanced Computer Architecture

i.e. algorithm level parallelism—and instruction level parallelism. This and some related points are discussed
in Section 13.2.1.

The concepts of work, work-efficiency and efficient parallel algorithm are useful in parallel algorithm
analysis and design, as is Brent’s theorem. These ideas are discussed in Section 13.2.3. A simple paraliel
computation is presented earlier, in Section 13.2.2, to provide a basis for the discussion of Section 13.2.3.

Stream processing is a form of parallelism which emerges from a consideration of the type of processing
involved in graphics, image processing, and signal processing. This form of parallel processing, which has
some features in common with both SIMD and data flow models, has been discussed in Section 13.2.4.

13.2.1 Structural Parallelism versus Instruction Level Parallelism

In the previous few sections, we have taken a broad overview of the major advances which have taken
place—over the last couple of decades—in processor. memory, storage, graphics, interconnect and network
technologies. These advances have had a major impact not only on computer system architecture, but also
on the kind of applications that are possible and are being demanded. Conversely, the growth in range of
applications has also had an impact on how computer systems are designed and built.

Tn the study of high performance computer architecture, there is an important difference between
theoretical peak performance of the system and the actual performance achieved in practice. This difference
is often quite significant; for example, the performance achieved in practice, for solving a real-world problem
on a highly parallel system, may be only 15% of the theoretical peak performance of the system.

This kind of a mismatch is not seen in other types of engineering products; for example, if a new model
of a car is designed, and its actual performance in practice is only 25% of theoretical peak performance, the
design will be judged a failure. :

The basic reason for this type of performance mismatch in the case of highly parallel computer systems
is the vast range of applications which are run on the systems. There are many possible application domains
of such systems—such as scientific computations, engineering design and simulations, commercial and web
applications, multimedia, games and virtual reality systems, signal processing, cryptography, and others.

Further, even within a given domain, there is a vast variety in the computational requirements of specific
applications. The hard fact remains that, even for a single application in a given domain, it is a buge technical
challenge to match its computational requirements to system hardware, and thereby achieve application
performance approaching theoretical peak system performance.

In the earlier years of computer systems, the aim was to write programs which were provably correct—
in the sense that they satisfied the specifications and were free from programming errors. For application
programs running on a highly parallel system, we have an additional and important objective—that the
programs make efficient use of all the computational resources available on the system.

In view of these facts, in utilizing high performance computer systems today, the technical challenge is
to design applications with the most appropriate models of parallelism, so as to achieve the best possible
performance. '

The application is the final determinant of system architecture, in the sense that the architecture must
necessarily serve the computing needs of the application. The application justifies the architecture. But, in

Trends in Parallel Systems ..

fact, application requirements grow and evolve faster than system architecture, and therefore the challenge of
matching growing application needs to evolving system architecture seems to be a never-ending one.
A few questions arise naturally in this context:

(1)

(2)

3)

Does the structure of the application have inherent, built-in parallelism in it?

For systems such as a web server or a transaction processing system, a large number of individual
requests are processed almost independently of each other, and therefore parallelism can be exploited
in the form of multi-threading. An independent thread can be created to process each service request or
transaction. To support a large number of threads in parallel, the system must employ a proportionally
larger number of processors, with multi-threading support within each processor.

For data paraliel applications such as graphics rendering, or computation-intensive scientific and
engineering applications, the SIMD or SPMD type model of parallelism may be more natural. Stream
processing, discussed below, is also a variant of this type of parallelism. In some cases, parallelism is
best exploited in the form of vector processing.

For any of such applications, the application designer and programmer(s) must explicitly design
and develop the parallel program, using appropriate features provided in the programming language
and the available function libraries. Such parallelism may be named structural parallelism in the
application, which can only be exploited by the application designer and programmer(s) provided the
system architecture has the necessary support for it.

Advances in paralle] programming language design aim to enhance the power and expressivity
of parallel programming—so as to facilitate the efficient realization of structural parallelism in an
algorithm. The student is referred to Section 13.4.1, which describes the newly introduced parallel
programming language Chapel.

Can the compiler discover all the parallelism latent in the user’s program?
"The compiler cannot discover the structural parallelism in an application, of the type mentioned under
(1) above. But, at the level of a single block of instructions, or across two or more blocks, the compiler
may be able to discover potential parallelism and exploit it if the underlying processor architecture
makes that possible. In addition, by techniques such as vectorizing and loop unfolding, the compiler
may be able to bring out and exploit more of the latent parallelism in a program.

These points have been discussed in earlier chapters. In terms of instruction level parallelism,
compiler-detection has its limitations, as we discussed in Chapter 12.

Can the processor discover all the parallelism latent in the running program?

Clearly the processor cannot discover structural parallelism in a program, because such parailelism is
not evident in the machine language version of the program. However, for exploiting parallelism in a
block of instructions, or across two or more blocks, this would be the alternative to (2) to expleit the
parallelism present in an instruction stream, as we have studied in Chapter 12.

As we have seen above, VLSI technology has provided the system designer with an abundance of
hardware capabtlitics. Moore’s law can be seen as one expression of the steady growth being achieved in
VLSI capabilities, So now the obvious question facing the computer system architect is this:

647 N Advanced Computer Architecture

For a given range of applications, and given the steady growth in VLSI capabilities, what should be the
trade-off in processor and system design between supporting structural parallelism and instruction level
parallelism?

The same question can also be posed in a slightly different way:

Suppose the designers of a new processor chip know that, with an improved VLSI process, they will
have twice as many transistors in the next version of the chip. The designers must then resolve—at system
level—the trade-offs between multiple cores, on-chip cache, functional units, pipeline stages, and aggressive
exploitation of ILP. Clearly these system level trade-offs cannot be resolved without a clear picture of the
target applications of the processor which is under design.

In recent years, there has been a shift in system design away from instruction level parallelism and
towards support for structural parallelism. The basic driver behind the shift is simple: fo achieve maxinum
performance for a given system cost. Development of multi-core architectures is a clear result of this shift, as
is hardware multi-threading, and the provision of sophisticated, high-speed system interconnects.

Another important benefit of parallel architecture is the potential to provide redundancy to echance the
fault tolerance of a system. For a system which must provide 24 X 7 availability, an important benefit of
having multiple processors, memories, and storage devices is that the system can continue to perform even
in the presence of an occasional failure. As against high performance, this system characteristic is known as
high availability.

As we have seen in earlier chapters, SIMD architecture and vector processing aim to exploit data leve!
parallelism (DLP) in an application. Over the last two decades, processor designers have expiored and
developed every possible technique to exploit instruction level parallelism (ILP) in programs, to the point
where scope for further progress in that direction seems to be limited.

In this scenario, the recent shift towards multi-core chips and hardware multithreading results in two types
of important performance benefits:

(1) Multi-core chips and hardware multithreading can exploit a broader range of structural parallelism in
applications. The processor cores in a multi-core chip operate in a shared memory mode. However,
message-passing, which works independently of physical locations of processes or threads, also
provides a natural software model to exploit the structural parallelism present in an application.

{2) A multi-core system with hardware multithreading also supports the natural parallelism which is
always present between two or more independent programs running on a system. Even two or more
operating systems can share a common hardware platform, in effect providing multiple virtual
computing environments to users. Such virtualization makes it possible for the system to support more
complex and composite workloads, resulting in better system utilization and return on investment.

We shall now take a look at a simple specific parallel computation, and then continue further with the
discussion of parallel algorithms.

13.2.2 A Simple Parallel Computation

To visualize clearly the role of parallel processing in algorithms, we now consider a simple example. The
computation here is a double-integration of a function of two variables over a rectangular region of the X-¥
plane. The double integration is evaluated numerically using a simple parallel algorithm.

Trends in Parallel Systems . " 643

)

A continuous function f(X,¥) of two variables X and ¥ defines a volume in the three-dimensional space
created by the three axes X, ¥ and Z = £X,Y). This volume is determined by the integral:

Example 13.2 Numerical integration over two variables

J' e '[;:ax FXY)dX dY

Ymin
where the appropriate limits on X and ¥ have been taken as .Ymin, Xmax, ¥min and ¥max, respectively.

When such an integral is to be evaluated on a computer, the axes X and Y can be divided into intervals of
length A X and AY, respectively, and the integral is replaced by the following summation:

LTF(X,Y)AX AY

The function f{X,¥) must be evaluated at an appropriate point, for example mid-point, within each area
element of size AX AY. Figure 13.2 illustrates graphically the double integration in question.
The number of intervals along X and ¥ axes is, respectively:

{Xmax -~ Xmin) (¥Ymax - Ymin)
Ny = 20 and Ny = SRR T
X AX and Ny AY

Since the product AXAY is constant, it can be taken out of the summations. Function values f{.X,¥) need to
be evaluated at various points within the grid which is formed on the X-Y plane by sets of orthogonal parallel
lines drawn, respectively, at intervals of AY and AX. These grid lines define strips parallel to X and Y axes,
with Ny strips being parallel to X axis, and Ny strips being parallel to Y axis.

Thus, when represented as a computation, the volume integral reduces to a summation. Since the integral
in question is a double integral over X and Y, the summation is also a double summation, with appropriate
limits,

fXY)

One
volume —
etement”

X
Fig.13.2 Double integration of (X, Y} over rectangular region of X-Y plane

644 T Advanced Computer Architecture

With a sequential algorithm, the summation requires NNy evaluations of A.X,Y) and the same number of
addition steps, i.e. computation time is proportional to NyNy.
One possible parallelized version of this algorithm is shown below!’):

1. For each of the Nx x Ny area elements, in parallel, calculate the value of the function f{X.Y) at the
mid-point of the area element.

2. For each of Ny rows, in parallel, calculate the summation of fiX,Y) at the Ny points along the row;
denote this summation as the respective row fotal, this is the inner summation.

3. Calculate the sum of Ny row totals found in step 2; this is the outer summation.

4. Multiply the sum of step 3 by AXAY.

Note that Ny x Ny processors are working in paraltlel in step 1. We shall discuss in Example 13.3 below
the number of processors working in parallel in steps 2 and 3.

Note also that step 2 should not start until all processors have completed step 1, and similarly step 3
should not start until all the processors involved have completed step 2. As we have seen catlier, this type of
synchronization between processors—or processes—is known as barrier synchronization.

We know that the addition of N numbers on a single processor takes N-1 addition steps. On multiple
processors operating in parallel, we can perform the same addition of N numbers in a more time-efficient
manner, as the following example illustrates.

b
& : Example 13.3 Addition using parallel processors

Let us consider the addition of N = 8 numbers on 4 processors. Assume that the numbers ay, ay, ..., a; are
distributed on eight processors py, py, .-, P7-

Step 1: Do inparallel: ap+ 84— ag, 8, tas— a3, atagoap a3 tar >y

Note that here, when we say ap + 84 — 8p, what is meant is that the operand a, is made available from
Processor Py to Processor po, using some mechanism of interprocessor communication. Operand a, is already
present in processor py, and therefore the result of addition is also then available in processor pg.

Step 2: Do in parallel: ag + a; — ag, a; + a3 — a;
Step3: agta —a

We see that four additions take place in parallel in step 1, two additions in step 2, and 2 single addition in
step 3. Barrier synchronization is needed between steps.

Sum of the eight numbers is available in a, after rhree time steps, and the degree of parallelism is 4, since
that is the maximum number of parallel operations we carried out, which was in step 1. Let us assume that, in
general, N = 2¥ for some integer k, i.e. N is a power of 2. The student can easily verify that:

%1 The parallel algorithm is shown here only as an illustration. Better discussion of paralle] algorithms can be found in
relevant books; see, for example Fundamentals of Sequential and Paraliel Algorithms by Kenncth Berman and Jerome
Paul.

Trends in Parallel Systemns l .- 45

(1) In the above example, at the end of three time steps, variable a, in processor p, does indeed have the
sum of the eight operands originally given to us.

(i) In general, for N = 2* values to be added, the number of time steps required will be k = log, V.

ao a4 82 33 34 as 36 ay

! |

Step 1
ap ay a ag
T Step 2
ao 81

{ I Step 3

Fig. 13.3 interprocessor communication in the three steps of the algorithm of Bxample 13.2, with N =8

Figure 13.3 illustrates the pattemn of communication between processors in the three steps of the above
algorithm. Note also that this type of parallelism can be applied to any associative operation over N operands.
For example, in the same way as addition was performed above, we could perform the max operation to find
the largest of A operands, or multiplication to find their product.

To apply the basic concept of Example 13.3 to the double integration discussed in Example 13.2, let us
assume for simplicity that we have a square grid over which the doubie integration is o be performed, i.e.
Ny = Ny = N. Then, for the steps of the parallel algorithm of Example 13.2, we can conclude that:

Function Evalugtion: For the evaluation of f{X.Y) at each grid element, we use N processors, and the time
taken is independent of N,

Row Totals: 'With N/2 processors used for each row, the N row totals can be calculated in parallel in log;NV
time steps.

Final Sum; The final sum is calculated using N/2 processors in log; N time steps.

Thus we see that, overall, with & processors, the computation of double integration is performed in time
O(logs/). In the next section, we shall discuss the issue of whether the parallel algorithm can be considered
optimal with respect to the corresponding sequential algorithm for the same computation.

Figure 13.4 presents another depiction of the inter-processor communication of Example 13.3. We see that
communication occurs in the pattern of a binary tree, with the addition—or any other associative operation—
taking place at every internal node.

646 iR Advanced Computer Architecture

g
Step 3
8 a4
/ \ \ Step 2
3o a; a 43
\ Step 1
ap a4 ap 3 ay ag a3 a7

Fig.13.4 Another depiction of the interprocessor communication. in the three steps of the algorithm of
Example 13.3,with N= 8

When such an operation is carried out on a multiprocessor system, it is known as a reduce or reduction
operation. It involves addition in the above case, but the concept is more general, because any associative
operation may be used as a basis for reduction.

13.2.3 Parallel Algorithms

As we know, the complexity of a sequential algorithm to solve a problem is defined in terms of the asymptotic
running time of the algorithm on a problem instance of size #. This complexity is shown in ‘big Oh’ or *order’
notation, e.g. O(#(n)): this means that, for all values of n > ny, the running time of the algorithm grows as
kt{n), for some constants np and k.

When a number of processors work in parallel on a computation, we need to define the concept of the
work performed by the algorithm. This necessarily depends on the number of processors used and the
corresponding running time of the algorithm.

For a problem instance of size », assume that an algorithm uses p(n) processors in parallel and has running
time in O(#(n)). Then the work performed by the algorithm on a problem instance of size n is defined as w(n)
= O(p(mum*.

In fact the actual number of processors used during the execution of a paralle! algorithm often varies. In
the summation of Example 13.3, we saw that the number of processors used decreases from #/2 to n/4, n/8,
and so on. But we consider the maximum number of processors used at any step during the parallel execution,
which is 7/2 in that example.

[0 Bork performed by the parallel algorithm can also be referred to as the cost of the algorithm; see the book cited above.

Trends in Poraliel Systems - 47

Now consider two different parallel algorithms, say I and II, for solving a given problem. In solving a
problem instance of size », let these two algorithms perform work wy(n) = O(py(r)1{n)), and wi{m) = O(py(n)
fu(n)), respectively.

We say that algorithm 1 is work-efficient with respect to algorithm 11 if wi(») is in O{wy(n)), Le. wiln) is of
the order of wyy(r). Basically this means that, from the point of view of work performed, parallel algorithm I
is comparable, within a constant multiplier, to parallel algorithm II.

A deterministic sequential algorithm is considered efficient is its running time «(») is a polynomial in »;
bubble sort, for example, has running time in O(»%). For some problems, e.g. traveling salesperson or CNF
satisfiability, no efficient i.e. polynomial running time algorithm is known—-and it is conjectured, but not
proven, that none exists,

In a similar way, we need to define the concept of an efficient parallel algorithm. Keeping in mind the
parallel summation—or in general, reduction—of »# elements, which we discussed in Example 133, we
define an efficient parallel algorithm as follows:

A parallel algorithm is said to be efficient if, for solving a problem of size », it satisfies the following two
conditions:

(1) The number of processors p(n) used is in O(r®), for some constant a, i.e. the number of processors
required is polynomial in #, and

(iiy The running time of the algorithm #(x) is in 0(logbn), for some constant &, i.e. the running time of the
algorithm is polviogarithmic in n.

Note that the numerical integration algorithm of Examples 13.2 and 13.3 qualifies as an efficient parallel
algorithm, witha=1and b = {.

We can now go a step further and define an optimal parallel algorithm:

An optimal parallel algorithm is defined as one which is work-efficient with respect to the best possible
sequential algorithm for solving the problem.

Consider finding the sum of » elements using #/2 processors in logn steps, as discussed in Example 13.3.
Clearly the work done is O(nlogn), and therefore this paralle] computation is not work efficient with respect
to the plain O(7) sequential algorithm for summation. In fact this argument applies to any reduction operation
carried out using an algorithm similar to that of Example 13.3.

o0

Con51der Example 1.5, parallel multiplication of two » x n matrices. The first version of the algorithm uses
w processors and takes O(logn) time. Work done p(n) £ (n) is thus O logn), and therefore this algorlthm 18
not work efficient with respect to the simple three-nested-loop sequential algorithm which runs in O(n) time.

A modified version of the parallel algorithm is also presented in Example 1.5, which uses n*/logn processors
and runs in O(logr) nme Since the product p(r) {(r) is now in O(1*), the modified algorithm is work efficient
with respect to the O(n”) sequential algorithm.

Example 13.4

64" Advanced Computer Architecture

Note that Strassen’s sequential algorithm multiplies two n x » matrices in O(n>*1 time, and in theory even
more efficient algorithms exist for matrix multiplication. Therefore even the modified parallel algorithm of
Example 1.5 cannot be considered optimal.

The student may recall that, for the second version of the algorithm in Example 1.5, the number of
processors used is reduced by a factor of logn, i.e. from 1° to #°/logn. We may say that, in the secend version
of the algorithm, n*/logn processors simulate the work of n* processors which are used in the first version.

In general, we can say that g(»n) < p{n) processors can simulate one time step of p(n) parallel processors
in O(p(n)/g(n)) time steps. Basically, each of the g(#) processors can simulate the computation of p(r)/q(#n)
processors, by executing instructions from that many instruction streams in a round-robin manner. For this,
we must make the reasonable assumption that the ‘context-switching’ time during the simulation, from one
instruction stream to the next, is constant, i.e. independent of #.

Using the argument of this type of simulation, we see that one time step of p(n) processors translates into
O(p(n)/q(n)) time steps of the g(n) < p(n) processors. Thus the running time of the algorithm on the reduced
¢(n) number of processors increases by a factor of O{p(n)/g(n)), giving vs the theorem known as:

Brent’s Theorem!'!! For a given problem, suppose that there exists a parallel algorithm which solves a
problem instance of size » using p(n) processors in time O(#r)). Further, suppose that we have g(n) < p(n)
processors available to solve the problem. Then the problem can be solved in time O(p(r)t{n)/q(n)).

In simple language, the simulation argument shows that, what we ‘save’ in terms of number of processors
used, is spent on proportionately longer running time. Note that the two versions of the parallel algorithm, on
p(n) and g(n) processors respectively, are work-efficient with respect to each other.

Amdahl’s law (see Chapter 3) divides the computational requirements of an algorithm between the
part which is parallelizable, and the rest which is not parallelizable—i.e. which must necessarily run as a
sequential program. For the concept of work done, we have considered the largest number of processors
used in parallel during the running of the algorithm. Therefore the point made in Amdahl’s law has no direct
bearing on Brent’s theorem; both the theorems make valid statements about parallel algorithms.

To obtain the maximum possible time efficiency from a high performance processor or computer system,
clearly the parallelism in the application must be discovered and then mapped onto the underlying hardware
on which the application is to run.

In the previous section, we have seen a simple example of a parallel algorithm. Now, we can go a little
further by posing questions such as the following:

« What is the nature of parallelism—data parallelism or control parallelism?

+ Is the data parallelism in the algorithm amenable to stream processing, or is it more consistent with the
SPMD mode of processing?

» In case of control parallelism, is it fine grain or coarse grain parallelism?

_ When we design and implement a parallel algorithm. clearly the program has explicit parailelism built
into it. In Section 13.2.1, we have dubbed such parallelism as structural parallelism. For such programs,

1) Gee The parallel evaluation of general arithmetic expressions, by Richard Brent, Journal of the ACM. vol. 21,
no. 2, 1974. Of course Brent's theorem is not a recent development in computer architecture. However, because of its
relevance in the design and performance of parallel algorithms. it has been included in this chapter.

Trends in Paralle! Systems 549

the programming language—and/or the supporting library of functions—must allow program design using
explicit parallel constructs. The source-level parallel program must then be mapped onto the hardware by the
compiler and the library functions, and then supported by the runtime environment.

Clearly, the programming language, function libraries, runtime environment and the underlying hardware
must all support the parallel constructs used. Some of the most demanding applications of high performance
computer systems today are designed and implemented by intelligent exploitation of structural parallelism.

Applications designed to exploit hardware multithreading!'—either Jfine grain or coarse grain—should
also be considered as examples of structural parallelism. Multiple instruction multiple data (MIMD)
parallelism, and the more restricted single program multiple data (SPMD) parallelism, both falt into this
category, as does the recently introduced concept of stream processing.

We have discussed in the previous chapter (i) instruction level parallelism (ILP), exploited by the
processor hardware while executing instructions, and (ii) compiler-detected parallelism, which is impliciz in
the application program. Clearly none of these forms of parallelism are involved at the stage of design of a
parallel algorithm.

To clarify this point, we have shown in Fig. 13.5 the three typical stages in the process of writing, compiling
and executing a parallel program. From this diagram, we see that:

(i) Structural parailelism enters into program design at the very first stage in program design and
development, and it needs support from both the underlying stages. If we view program design in
a top down manner, then this form of parallelism is introduced and exploited at the highest level of
abstraction in program design,

(1) Compiler-discovered parallelism is discovered in the second stage. and it needs support from the
underlying hardware. This form of parallelism focuses on a block of instructions, or it may have scope
spanning across two or more blocks.

uii) Processor-discovered parallelism (ILP) is independent of the first two stages; it is discovered and
exploited on-the-fly by the processor hardware; it relies on discovering independence between the
multiple instructions of the program which occupy the fetch buffer and instruction pipeline at one
time,

Application program written in a
higher level language

Compiler, function libraries and
runtime environment

Processor(s) on which application
runs

Fig.13.5 Stages in writing, compiling and running an application

12 The word thread here may refer to a process as defined by the OS. To understand hardware support for multithreading,
the distinction between fhread and process is not crucial. The concept of hardware context applies to both—i.e. regis-
ters, PC, flags, etc. Here we assume that the OS takes care of the differences, if any, between a thread and a Pprocess,

1 e Advanced Computer Architecture

v

Presented below is a sequential version of the program of Example 13.2, which can easily be compiled and
run on a conventional single-processor system. Note that Step 2 has a nested loop structure, which takes care
of the Ny x Ny grid in the X-Y plane.

Example 13.5

1. Initialize SUM to zerc
2. For I going from 1 to Ny
For J going from 1 to Ny
Calculate the value of the function
F{X[L11+ AX/2,Y[J]+ AY/2) and add it to SUM.
3. Multiply SUM by AXAY.

Is it possible that a compiler could parallelize this program? The general aim is that, for a system with N,
processors, a parallelizing compiler will produce code which will carry out the above computation in time
proportional to Nx X Ny/N,; here N, need not in general be related to Ny or Ny, except that it is less than or
equal to Ny X Ny,

If the compiler generated code satisfies this condition, then the parallelized version of the algorithm is
work-efficient with respect to the sequential version.

In this particular program, since loop iterations are independent of each other, we may concede that this
program can thus be parallelized.

In the general case, however, this is certainly a non-trivial task, and no compiler can extract the maximum
degree of parallelism from an arbitrary sequential program. Chapter 10 of this book discusses several relevant
techniques. On some systems, for example openMP (see Section 13.4.2), the programmer can pass a *hint” to
the compiler when a loop is to be parallelized, and the compiler can then do the needful.

Parallel programming languages—for example, the newly developed Chapel {see Section 13.4.1}—
provide explicit parallel program structures. Therefore in such cases the job of the compiler does not involve
detection of parallelism, but only efficient code generation for the target parallel hardware platform.

SIMD and MIMD forms of parallelism have been discussed quite extensively in the earlier chapters of
this book. Over the last decade and a half, with newer technology being available and greater demands being
made on systems, a new form of parallelism has been put to use on a wide scale in applications, which has
been dubbed single program multiple data (SPMD).

Parallelism in this case can take the form of one independent thread of execution per task, request or
transaction to be processed. Unlike in the traditional SIMD model, there is no lock-step synchronization here
between the multiple threads, and there need not be one-fo-one relationship between threads and processors.
We may even assume here that the threads execute the same reentrant code. Therefore the SPMD model
of parallelism has the advantages of simplicity of implementation and easy scalability, and the model has
achieved wide-spread use for commercial and server-based applications.

Trends in Paratlel Systems " 5|

Stream processing is another form of parallelism, proposed and developed in recent years, which has some
characteristics of SIMD as well as data flow processing. This is a form of data parallelism which relies on
high level of data locality and regularity in the processing of stream data, and can yield huge performance
benefits, as we shall see in some more detail in Section 13.2.4.

Each of the forms of parallelism has its advantages and difficulties. With the background we have gained
thus far, in Section 13.3 we shall look at a few case studies of recent developments in processor and system
architecture, and in program development tools and technigues. Some of these case studies are in continuatjon
of the systems studied in earlier chapters, while others are new entrants.

The important point bears repetition that the technological advances outlined briefly earlier in this chapter
have had a very important bearing on the developments in computer hardware and software technologies.
As the supporting technologies advance further, we shall no doubt see further innovations in computer
architecture and technology as well.

13.2.4 Stream Processing

For animated 3D graphics, multimedia, image and signal processing applications, very high processing power
is needed—and data is processed mostly in the form of data streams. Sometimes animated graphics includes
the simulation of game physics, i.e. simulation of multiple objects in the scene behaving under modeled
physical laws. Other applications where stream processing can be usefu include 3G mobiles, set-top boxes,
biological computations, cryptography, and database queries.

All data elements in a data stream go through the same processing stages. For example, the 3D graphical
model of a car may be made up of hundreds of thousands of line elements or polygons, which must be
processed through the so-called rendering pipeline to display the car on the system display screen. For
animated graphics, a certain number of picture frames must be processed and displayed per second, and in
general each frame must be processed through the same rendering pipeline.

These huge demands made on processing capability are for a single application—e.g. graphics processing,
including game physics. To cater to these highly specialized needs, graphics processing units (GPUs) have
been developed over the years, to relieve the main general-purpose processor(s) in the system of graphics
processing load. The GPU operates in parallel with other processor or processors in the system.

With advances in VLSI technology, GPUs have also grown in processing power. Several research groups
and commercial producers of GPUs have therefore sought to apply the vastly increased processing power of
GPUs to more general computing. This has led to the emergence of stream processing, which combines high
processing power, energy efficiency and programmabitity by exploiting the key properties of data parallelism
and data locality which characterize data streams.

Stream processing can be seen as a new variant of SIMD, in which streams of data flow amongst processing
kernels; in this sense, stream processing involves also some features of data flow processing. The processing
kernels are basically software functions being executed on GPU processor cores. Multiple copies of a kernel
execute in parallel on multiple cores——thus giving SIMD character to this form of processing.

The basic concept is illustrated in Fig, 13.6, with four kernels operating on one data stream. Multiple
such sets of kernels will in general execute in parallel in a stream processor, to achieve proportionately
higher parallel processing power. With sixteen such sets operating in parallel, for example, the total number

652 1. Advanced Computer Architecture

of processor cores employed will be 64, with each of the four kerel functions executing in sixteen cores in
parallel. Note that the number of data streams being processed in parallel will be sixteen.

A so-called local register file is provided with each core to maintain copies of working variables for
the single execution thread (or task) running in each core. There is no multi-threading provided in each
core, but it is possible to exploit ILP to some extent within each core. Data locality plays a key role in the
design of a stream processing algorithm; stream processing is a form of structural parallelism, as defined in
Section 13.2.1.

Kernel Kernel =, | Kernel Kernel
- padn g1 : | PR) N

function 1 7 function 2 %@ function 3 function 4
%
k\ X .
\ “ '

\\"-. \\\ !' . _”4”

\‘“----__‘_:_‘*- onedata -~ """ TTTTTTTC

: stream

Fig.13.6 Four procassing kernels operating on a data stream

The properties of data parallelism and data locality govern the design of stream processors, since they
permit efficient use of the bandwidth to memory—without the use of huge and expensive cache hierarchies.
Recall that cache hierarchies are designed to support any random pattern of accesses to main memory,
whereas memory accesses made for data streams are in a highly regular pattern.

Researchers at Stanford University designed the IMAGINE stream processor, which achieved tens of
Gflops performance for certain graphics applications—with aggregate power dissipation less than 10 watts.
MERRIMAC is the name of another research project at Stanford aimed at a larger computing platform using
stream architecture and advanced interconnection networks. This research project had goals of achieving a
high ratio of computation to communication, very high performance, compact size, high energy efficiency,
reliability, simple system management, and scalabilitym].

Nvidia Corporation[”] has long held a leading position in industry as a producer of graphics processing
units. As GPUs grew in processing power, Nvidia developed more general-purpose processors based on
their graphics expertise. They also defined a hardware/software platform named Compute Unified Device
Architecture (CUDA) for general purpose program development using GPUs and standard programming
languages. Nvidia named this concept GPU Computing—i.e. GPUs applied to general purpose computing.

From around 2006, Nvidia have developed several multi-core, multi-threaded gerneral-purpose GPUs
(also called GPGPUs), which were named GeForce, Quadro and Tesla. With substantial improvements,
Nvidia have now announced their advanced Fermi architecture for GPU Computing.

The first Fermi based GPU from Nvidia has over 3.0 billion transistors and 512 cores. Each core
executes a floating point or integer instruction per clock. The 512 cores are organized in 16 so-called stream
multiprocessors (SMs) of 32 cores each. L2 cache is shared between the 16 SMs. The GPU chip provides six

U3) See hitp://merrimac.stanford.edu and http.//cva.stanford.edu
U4 gee http:/fwww.nvidia.com

Trends in Parallel Systems .. 53

64-bit memory interfaces, for a total 384-bit memory interface, supporting up to a total of 6 GB of memory.
A host interface connects the GPU to the CPU via PCI-Express, while the GigaThread unit on the GPU
schedules groups of threads amongst the SMs.

A schematic diagram of the Fermi chip is shown in Fig. 13.7. Apart from the 32 cores, each SM is also
provided with 16 load/store units, and four independent special function units (SFUs) to compute sine, cosine,
reciprocal, and square root functions. The cores themselves are very basic, with one ALU and one FPU each.,

Compared to earlier GPUs developed by Nvidia, Fermi offers improved memory access and double-
precision floating point performance, ECC support, (limited) cache hierarchy, more shared memory amongst
SMs, faster context switching, faster atomic operations and instruction scheduling, and the use of predication
to reduce branch penalty. Threads are grouped into larger units—known as warps, blocks, grids—for the
purpose of scheduling,

Most of the area in the Fermi chip is taken up by actual processing elements—i.e. FPUs, ALUs, and SFUs.
This is unlike more conventional processors, in which huge cache memories occupy a greater proportion
of chip area. This basic difference accounts for the higher processing performance and energy efficiency of
stream processors.

SM|SM|SM|SM|SM|SM|SM|SM|SM

NI D
SM: Streaming
multiprocessor, with
LZ cache 32 cores, SFUs,
load/stre units,
dispatcher, locat

GT D register file, L1 cache

D: 64-bit DRAM
interface

NI: Network interface

SM|SM|SM|SM|SM|SM|SM|SM|SM

GT; Giga Thread

Fig.13.7 Block diagram of Fermi GPU

When we compare stream processing with other available technologies for achieving specialized and
power efficient processing, the following broad picture emerges:

(1) Application specific ICs (ASICs) have comparable performance and are power efficient, but they
involve longer design cycles and design costs, and are less flexible.

(i} Field-programmable gate arrays (FPGAs) are less energy efficient, and do not allow applications to be
programmed in higher leve! languages.

654" T Advanced Computer Architecture

With these advantages going for them, it is quite likely that we shall see more specialized applications of
stream processors in the coming years, :

13.3]] CASESTUDIES

13.3.1 Cray Line of Computer Systems

The name of Seymour Cray!'®! is well-known in computer industry and academia for his path-breaking
innovations in supercomputer architecture, including innovative packaging and cooling technologies. The
design of earlier Cray vector supercomputers has been described in this book (see Chapter 8).

In the next line of products, Cray computer systems combined multiprocessing with vector processing.
Cray X-MP, the first so-called multiprocessor supercomputer, has been described earlier in this book. Its
more powerful successor Cray Y-MP was also a hugely successful multiprocessor supercomputer.

In the category of massively parallel processing (MPP) systems, Cray came out with T3D and then its
more powerful successor T3E, both of which used a 3-D torus topology. The increasing costs of VLSI
processor design had by then led computer system architects to opt for proven processor designs of other
manufacturers. T3D and T3E both employed different versions of the 64-bit DEC Alpha processorsw’].

Subsequently, Cray introduced the XT series of so-called scalable Linux supercomputers. This is currently
Cray’s top-of-the-line massively parallel supercomputer, and further technical details of the system are
provided later in this section.

Cray XMT supercomputer, announced in 2006, is a descendent of the Tera/MTA massive multi-threading
concepts. The system uses Cray’s own 500 MHz, 64-bit Threadstorm processors, each of which can support
128 threads. With as many as 8000 processors, the XMT system can deliver over one million concurrent
processing threads; total shared memory on the system, at up to 8 GB per node, can be up to 64 terabytes. The
system is designed to provide the very high levels of multi-threading performance needed for applications
such as data analysis, data mining, predictive analytics, and pattern matching. The system interconnect used
is Cray’s proprietary SeaStar technlogy, which is also used in the XT5 and XT6 supercomputers {see below).
Scalar processing, /O and service functions are provided by AMD Opteron-based nodes.

Cray CX1 is a lower-end supercomputer from the company which is less expensive and easier to deploy.
It makes use of Intel Xeon processors in a cluster architecture.

1131 Geymour Cray [1925-1996] is known as the father of supercomputing, and is close to being a legend in this field. The
following statement attributed to him should be of interest to any student of computer architecture: Anyone can build
a fast CPU. The trick is to build a fast system.
Seymour Cray was the chief designer of CDC 6600, the first commercial supercomputer ever built, at Control Data
Corporation. This was followed by CDC 7600, before Cray founded his first company Cray Research, which built
Cray 1 and Cray 2. That first company has since undergone several corporate takeovers and makeovers, and is pres-
ently established as Cray, Inc. See http://www.cray.com.

M6l DEC stood originally for Digital Equipment Corporation, of Maynard, Massachusettes, which was at one time the
world’s second largest computer company. It was taken over by Compagq, and at a later stage that company became
part of HP. See hup.//www.hp.com.

Trends in Paraflel Systems " 5

Inmodern computer systems, power consumption and packaging play a key role in system design. Packaging
determines not only the length that signals have to travel, but also the aggregate cooling requirements of the
system. Since the days of Cray 1, Cray computer systems have been justifiably well-known for technical
innovations in system architecture, packaging and cooling.

A recent initiative in the Cray line of systems is the concept of adaptive computing—the idea being to
adapt a hybrid parallel processing computer system to each application through innovative software. The
word Aybrid here refers to a system which combines the elements of vector processing, parallel processing,
and multi-threading.

Since Seymour Cray developed the earliest supercomputers, almost forty years ago, we can discern in the
history of successive Cray products the broad direction in which computer technology and architecture have
moved since those early days.

Cray XT Supercomputers The major current ranges of Cray supercomputers—at present capable of
reaching petaflops performance—are in the XT series, and in particular XT5 and the recently announced
XT6. XTS supercomputers have reached sustained petaflops performance; one particular XT$ system at Oak
Ridge National Laboratory in the US (nicknamed ‘Jaguar®), is currently rated as the world’s most powerful
supercomputer. That particular system uses six-core AMD Opteron processors, with a total of over 224,000
processing cores in the system, and can reach peak performance of over two petaflops.

The brief description given below is specific to XTS5, but it also serves to introduce Cray’s present
supercomputer technology. The main goals of this technology are high computing performance with
scalability and programmability. At the same time, advanced packaging, efficient cooling, and low power
consumption have all along been characteristic features of Cray products; the OS platform employed is
Linux-based. XTS5 is based on AMD Opteron processors (quad-core or six-cote) in a 2D torus network which
is built using Cray’s proprietary SeaStar interconnect.

Each diskless compute node in the network is made up of two Opteron processors, which have a shared
25.6 GB/sec data path to shared local memory; the local memory is 16 GB or 32 GB DDR2 memory provided
with ECC. Each processing core has 64K L1 instruction cache, 64K L1 data cache, and 512 KB L2 cache,
and in addition the processor chip provides 6 MB shared L3 cache.

The proprietary SeaStar high-bandwidth interconnect is based on HyperTransport physical links. Each
SeaStar ASIC (application specific IC) chip is provided with four 12-bit wide network links to the four
neighbouring SeaStar chips in the 2D torus, and one link to the node itself. Each inter-node link, provided
with specially-designed link-level software, has peak bi-directional bandwidth of 9.6 GB/s and sustained
bandwidth in excess of 6 GB/s. Dimension order routing and, for reduced latency, virtual cut-through are
used within the built-in high-speed routers. The chip also has a direct memory access (DMA) engine, a
communication-cum-management processor, and a service port.

As seen in Fig. 13.8, the 2D torus network in the system can be configured with the required combination
of compute nodes, 'O node(s), network node(s), login node(s) and system node(s). Storage arrays are
connected to I/0 nodes, being scalable with the number of I/O nodes provided; the file system manages
striping of file operations across the storage arrays. The network node(s) provide Gigabit Ethernet, 10 Gigabit
Ethernet, Fibre Channel (FC), and InfiniBand connections.

656 Uil Advanced Computer Architecture

CN CN CN CN ™

CN SN LN I/ON ™

CN: Computer Node
SN: System Node
LN: Login node
[/ON: /O node
NN; Network node

Fig. 13.8 Schematic of 2D torus network in Cray XT5

For its XT supercomputers, Cray has developed its own Linux-based Cray Linux Environment (CLE}. The
OS kernel operating at compute nodes can be configured for different workloads. For custom applications in
which performance and scalability are of primary importance, the compute nodes can be run in a lightweight
kemel mode, ie. with a very thin OS layer intervening between the custom application and hardware.
When running standard applications, for which compatibility may be more important, the compute nodes
can be configured with a compatible Linux layer, which provides the OS services needed for application
compatibility. A single-root file system is maintained across all nodes, which can be inter-operated with other
files systems such as NFS.

Program development software supported includes Fortran 90, Fortran 95, C, C++, MPI 2, Cray'’s shared
memory software SHMEM, OpenMP (used within a single compute node), and high-performance math
libraries. Other supporting software provided on the system includes performance analysis tools which assist
in achieving better resource utilization and load-balance. Application programs developed for XT can be
based entirely on MPI, with each core in the compute nodes running an MPI task; alternatively, OpernMP
can be used within compute nodes and MPI across compute nodes.

Other critical supporting hardware and software features provided on the system include system monitoring,
fault identification and recovery. checkpoint and restart, system interconnect management, system status
displays for the administrator, redundant power supplies and voltage regulator modules, and redundant data
paths to the system RAID.

Trends in Paralle! Systerns - 657

At the 2009 Supercomputing Conference, in November 2009, Cray announced its high-end XT6
supercomputer system, which employs eight- and twelve-core AMD Opteron processors to provide higher
processing performance than XT5; each compute node in XT6 can be provided with 32 GB or 64 GB of ECC
DDR3 iocal memory. In future systems, XT6 can be upgraded to 12- and 16-core Opteren processors.

Both XTS5 and XT6 supercomputers are also available in fully-compatible midrange versions XT5m and
XTém respectively.

13.3.2 PowerPC Architecture, IBM Power7 & Blue Gene

PowerPC Architecture The first articulation and implementation of the concept of reduced instruction set
computing (RISC) is believed to have been by a team led by John Cocke at IBM!!'"], the resulting processor
being known as IBM 801 processor. This processor later evolved into IBM’s Power processor architecture.

In the early 1990s, IBM, Apple and Motorola!'®! used the Power architecture as a basis to define the
PowerPC architecture, with the letters PC denoting performance computing. PowerPC has a simpler
instruction set architecture than the earlier Power architecture; in this sense PowerPC architecture is more in
the spirit of RISC and facilitates high performance implementations.

PowerPC processor architecture has been designed for a very broad range of applications—from low cost
applications, such as embedded applications, to very high performance systems with multiple processors.
Any designer and builder of a specific PowerPC compliant processor must therefore select the target range of
applications. About a dozen companies currently produce processors in this family, IBM being one of them.

PowerPC architecture includes compatible 32-bit and 64-bit operating modes. Functional partitioning
within the processor makes it suitable for providing superscalar capability; the design aims at maximizing
processing throughput rather than clock speed.

There are by now dozens of processors in the PowerPC architecture family; these processors are designed
for various different applications—as embedded processors, in game consoles, in servers and mainframes, in
high performance computing systems, and others. As a specific example, we shall take a brief look below at
the ambitious Power7 processor currently under development at IBM.

IBM Power? Processor IBM Power7 is a high performance server processor under development which—
when it is released in 2010—is likely to be the most powerful processor in the large PowerPC family. The
processor is designed using 45 nm VLST technology, and has about 1.2 billion transistors on a chip area which
is slightly under 6 cm”. The design clock speed of the processor is slightly over 4 GHz.

Power7 is planned as a multi-core processor with 4-, 6-, and 8-core versions. Each core supports 4-way
simultaneous multithreading (SMT). A system will in general consist of multiple circuit boards, each of them
with multiple processor sockets,

As we have discussed above, bandwidth becomes a critical requirement in supporting multi-core, multi-
socket and multiprocessor systems. To address this requirement, each Power7 processor has a pair of
4-channel DDR3 controllers, to sustain 100 gigabytes per second of memory bandwidth. The large 32 MB
L3 cache uses so-called embedded DRAM technology for reduced chip area and power consumption.

(7] Gee http./fwww.ibm.com. The interested reader may see The Evolution of RISC Technolugy at IBM, by 1. Cocke and
V. Markstein, IBM Journal of Research and Development, 34(1):4- 11, 199¢,

1% gee http.//www.powerorg, For the purpose of this brief case study, we feel it is not essential to discuss in detail the
differences between Power and PowerPC instruction sets.

558" il Advanced Computer Architecture

To support superscalar operations, each Power7 core has twelve functional units: two integer units, four
double precision floating point units, two load/store units, and one each of decimal floating point unit, vector
unit, branch unit, and condition register unit. The decimal floating-point unit addresses the needs of typical
mainframe applications.

Within the processor, after the decode stage, instructions are dispatched and tracked in bundles which
occupy six time slots of the processor clock. The idea behind this feature is that the hardware bookkeeping
which is required for tracking instructions during their execution is thereby simplified.

IBM Blue Gene IBM Blue Gene refers to a series of massively parallel supercomputers being designed
and built mainly by IBM, but with active support from the US Government and academia. Blue Gene/L, the
first in this series of supercomputers, has already been delivered at a few sites and has been in operation.
One key targeted application of this supercomputer is in carrying out biomolecular simulations to study, for
example, the folding patterns of protein molecules, which have a bearing on their function.

Targeted peak performance of this supercomputer is the petafiop region, i.e. 10'° floating point instructions
per second. Since per processor performance is in the range of gigaflops, it is clear that petaflop range
performance can only be achieved with a large number of processors operating in parallel.

A computation node in the massively parallel system has two cores of PowerPC 440, with shared on-
chip L3 cache. Inter-processor connection network has a basic 3D torus topology, but two other networks
are also provided—one for global communication and another for barrier synchronization. Each core in the
system runs very lightweight Linux OS with a single process. Processors can be partitioned amongst multiple
applications, with the additional benefit of improved fault isolation. It is noteworthy that standard Linux
applications such as MySQL have been run successfully on the system.

Asingle Blue Gene/L cabinet houses up to 1024 computation nodes, while the system can host 2 maximum
of 65,536 (i.e. 216) computation nodes. Processor clock speed is 700 MHz—kept relatively low for reduced
power consumption. Power consumption is an important issue in such MPP systems, since a reduction in
power consumption allows denser packaging, and also reduces overall power and cooling demands.

The design of Blue Gene has been recognized for its many technical innovations, and the supercomputer
series is likely to provide several landmarks in the development of high performance computer systems. After
Blue Gene/L, subsequent and more powerful supercomputers in the Blue Gene series are designated with
letters P and Q. An explicit design aim is to achieve higher computing performance per watt, and thereby
allow systems to be built with larger numbers of processors operating in parallel.

13.3.3 Tilera’sTILEé4 System

VLSI technology today allows the design and fabrication of chips with over a billion transistors. System-on-
a-chip (SoC) is now a reality, but the question is how to divide the on-chip resources amongst the functional
blocks and the vital interconnects, which extend both within the chip and to external memories and interfaces.
We may say that the basic question is how best to architect a system. To understand better the design trade-
offs involved, we now look at an innovative new architecture of a system-on-a-chip.

Tilera Corporation“g] is co-founded by MIT Professor Dr Anant Agarwal, who is considered a pioneer in
developing the system architecture exemplified in TILE64. Earlier, Dr Agarwal was closely associated with

(19 See http:/www. tilera.com

Trends in Parafiet Systems . 559

the Alewife project at MIT, a scalable multiprocessor system based on cache coherent non-uniform memory
access (c¢cNUMA) design, making use of single chip processors.

TILE64 is a 64-core processor for embedded applications, in which cach chip consists of a regular
8 x 8 grid of files. Typical embedded applications for which TILE64 is well-suited are those which are very
highly computation-intensive, such as network routers, encryption/decryption, video applications, and signal
processing,

As seen in Fig. 13.9, each tile on the TILE64 chip has its own general purpose processor core, L2 cache,
and a non-blocking mesh router to provide for communication with other tiles on the chip, and for off-chip
data traffic with main memory, IO devices and networks. The name given by Tilera to this on-chip mesh
interconnect is iMesh.

TILE64 is fabricated using 90nm VLSI technology, and runs at speeds of up to %00 MHz.

, one ‘ile’
i
iMesh connections - c /
to neigboring A
tiles -

Ve o > Legends:
‘\ - L R ' ' g
\\\ 1 4 P: processors
A / C: 64kB L2 cache
Tell - J R: iMesh router
%

Fig.13.9 One tile in the TILE64 system-on-a-chip

The processor core in each tile is a relatively simple RISC-style processor which does not, for example,
provide for out-of-order execution of instructions. Each processor core has three functional units: two 32-bit
integer ALUs and a load-store unit. The design emphasis in TILE64 is not so much on the processor, but on
the iMesh-based system-on-a-chip architecture, cache management, support for high data rates required to
main memory, and other critical elements which impact system performance.

On an L2 cache miss, the processor checks the other on-chip L2 caches for the needed data, before making
a slower access to main memory. In this sense, the combined L2 cache memories of the 64 processors can be
viewed as forming an L3 cache,

According to Tilera Corporation, “iMesh provides each tile with more than a terabit of bandwidth, creating
a more efficient distributed architecture and eliminating the on-chip data congestion”. In fact iMesh consists
of five independent communication structures, which provide for, respectively:

+ Communication between user processes/threads running on tiles
* Communication with I/O devices

660" T Advanced Computer Architecture

« Communication with off-chip main memory
+ Tile-to-tile cache transfers
+ Low latency interconnect for streaming data

DRAM,
LAN, and
fle]
interfaces

ooonoooon
OOoo0oatg
Ooodogaoog
OOoO0ogouay
Oooooooon
oOoOoOoOoounl
ooOooooadg
MOOOoong

DRAM,

LAN, and R 64 tiles,
~~. shown

Vo without

interfaces iMesh

Fig. 13.10 TILE64 -sy_stém—on'-a;chip
Figure 13.10 depicts the architecture of this 64-core system-on-a chip.

13.3.4 Sun UltraSparcT2 Processor

Starting from around the mid-1980s, the concept of reduced instruction set computing (RISC) began to be
more widely known, following the work done by David Patterson at the University of California, Berkeley,
and John Hennessey at Stanford University. The work done at Berkeley led subsequently to the development
of the Sparc processor by Sun Microsystems[m] in the late }980s.

The basic idea of RISC is that, with a reduced instruction set, a processor can in fact perform more useful
work per second. The two key elements of processor architecture which make this possible are the instruction
pipeline and the cache memory (which in today’s processors may be organized at L.1, L2 and L3 levels).

The original Sparc processor is a 32-bit RISC processor with load-store architecture, relatively simple
addressing modes, and register-to-register arithmetic/logic machine instructions in three-address format.
Separate registers are provided for integer and floating point operands. Of the 32 integer registers, some play
a special role in passing arguments during function calls from the calling to the called function.

UltraSparc is the 64-bit enhanced version of Sparc, and UltraSparc T2 is the newest multi-core, system-on-
a-chip version of UltraSparc with extensive on-chip support for multithreading, networking, /O, and other
key functions.

For increased processor performance, one design option for processor designers is to maximize instruction
issue rate by increasing the number of stages in the instruction pipeline. The idea is that—with each

{20 gee hitp:/fwww.sun.com. Before Sparc, the company used Motorola’s 680x0 series processors in its workstations.

Trends in Paralle] Systems - 61

pipeline stage doing relatively less work in a clock cycle—it is possible to drive the processor with a higher
clock frequency. However, the problems of pipeline flushes and stalls do not go away, and the total power
consumption of the chip increases rapidly with clock frequency. As a result, total power consumption of the
chip becomes a limiting factor in achieving higher performance.

In this connection, the following observation is of interest?'!:

Power and memory latency considerations place additional obstacles fo improving single-thread
performance. While recent attempts at improving single-thread performance, through even deeper pipelines,
have led to impressive clock frequencies, these clock frequencies have not translated into demonstrably better
performance over less aggressive designs.

UltraSparc T2 and its predecessor UltraSparc T1 are designed to achieve higher processing throughput
by adopting a different strategy. The architecture of these multi-core chips is designed for those highly
demanding applications which exhibit a large degree of thread level parallelism (TLP), but not necessarily
much instruction level parallelism (ILP). The strategy implies that the compute time and memory latencies of
multiple executing threads are interieaved in time, with increased total throughput.

UltraSparc T2 has eight processor cores on the chip, with each supporting eight-way fine-grained muiti-
threading. Overall, therefore, the chip supports sixty four parallel threads. The chip also contains a crossbar
switch, shared L2 cache, and extensive support for /O and networking, and therefore it is in fact a system-on-
a-chip (SoC). Since the threads run independently of each other and share hardware resources, each thread
behaves as a processor in its own right; thus the single chip can support 64 virtual systems.

Figure 13.11 depicts schematically the architecture of UltraSparc T2.

Processor cores L2 cache
core} [« _ le—> bank(e—)
r
core t (e 5 e bank 1 -«
s
core2 (e g «—» hank 2 - =
b to main
core3 [« a e bank3 - > memory sub-
r systems
core 4 [» bank 4 - >
-]
cored [w» W le-ml bank5 -
i
core § |« t <> hank 6 B > J
C
core 7 | h les bank 7 - .
system interface
1 unit
to I/O
L bus
SV e

Fov-

to local area network ¢

Fig.13.11 Architecture of UltraSparc T2 system-on-a-chip

Y From Chip Multithreading: Opportunities and Challenges, by L. Spracklen and S. G. Abraham of Sun Microsystems,
IEEE International Symposium on High-Performance Computer Architecture (HPCA-2005), 2005.

662" W= Advanced Computer Architecture

The T2 chip has an area of just under 3.5 cmz, with about 500 million transistors on it, and is fabricated
using a VLSI process of 65 nm line width. The chip can operate at | .4 gigahertz with 1.1 volt supply, and has
1831 pins on its underside for connection to the rest of the computer system. Nominal power consumed by
the chip is 95 watts; on the basis of power per cm? of area, this is greater than that of an iron. However, on a
per thread basis, this power consumption works out to be quite low.

Each of the eight processing cores on the T2 chip has its own data paths, register sets for multiple threads,
two integer operation units, and a floating point unit. In addition, each core has hardware provided for
cryptography and graphics, and has support for eight-way fine-grained multi-threading. These hardware
resources, and the per core L1 instruction cache and data cache, are shared by eight threads executing on
each core,

At the level of the system-on-a-chip, othet hardware resources such as the 4 MB L2 cache are made
available to the eight cores by means of a crossbar switch. For faster access, the L2 cache is organized in the
form of eight parallel banks. Memory intetfaces, [/O interfaces, and networking are also shared amongst the
cores. Networking capability consists of two network interfaces of 10 gigabits/second each.

Design of UltraSparc T2 is targeted towards compute-intensive applications with a high degree of multi-
threading. Apart from back-end servers, these include network devices such as packet routers, switches for
local area networks, graphics and imaging applications, and other similar applications.

A unique feature of the UltraSparc T2 chip is that its complete design has been made available on the web
to researchers and developers under an ‘open source’ arrangement, The stated objective behind this decision
by Sun Microsystems is to encourage innovations around the werld in processor design and applications.

13.3.5 AMD Opteron

AMD?%, a major manufacturer of semiconductor devices, is known for its processors which are instruction-
set compatible with Intel’s x86 family of processors. Opteron is a high performance 64-bit processor from
AMD which maintains instruction set compatibility with the 32-bit x86 instructions without any performance
penalty.

AMD’s 64-bit instruction set architecture provides for 64-bit operands, 128-bit operands, and 64-bit
virtual addresses. The development of such a 64-bit extension of the Intel x86 architecture is targeted towards
applications which require huge amounts of memory, examples being high performance servers, workstations,
database management systems, and engineering design tools. The processor also provides integer and floating
point vector operations for graphics/multimedia types of functions, some of which are known as streaming
SIMD extensions (SSE); in this category, combined multiply-add as well as matrix operations are provided.

Opteron is characterized by a fairly large split L1 cache, with 64 KB for instruction cache and 64 KB for
data cache. L2 cache is either 512 KB or 1 MB, depending on the model, while the shared L3 cache goes
up to 6 MB on the newest six-core models. Since 2003, when the processor was introduced, it has been
implemented using the successive 130 nm, 90 nm, 65 nm and 45 nm VLSI technologies.

The processor architecture is 3-way superscalar—i.e. up to 3 instructions can be completed per clock cycle.
Speculative and out-of-order execution is provided, as is register renaming, to remove apparent dependencies
between instructions in the instruction pipeline. ’

1221 e hup:/iwww.amd.com.

Trends in Parallel Systems "W 563

Support for multiprocessor systems is provided on the basis of cache coherent non-uniform memory
access (ccNUMA), rather than the symmetric multiprocessing (SMP) design with a common shared
memory. A processor ¢an access the memory of another processor, and sophisticated snooping hardware is
provided to ensure cache cohefence. Compared to SMP systems, such systems can support a higher degree of
multiprocessing without running into the memory bandwidth bottleneck.

Unlike in the Sun UltraSparc T2, there is no hardware support in the Opteron processor cores for multi-
threading, reflecting the different design objectives behind the two processors. Multi-core versions of the
processor have been manufactured with up to six cores per chip. HyperTransport links {see Section 13.1.4)
are used both for processor-memory communication and for inter-processor communication.

As seen above, Cray has incorporated the Opteron processor into their XT series of supercomputers,
which can support configurations having thousands of processors. Some of the world’s most powerful
supercomputers are based on this Cray architecture using large numbers of Opteron processors. Sun
Microsystems uses the Opteron processor in its high-end servers having large processor counts.

When we compare the design of the Opteron processor with those of TILE64 and UltraSparc T2 processors
(see above), a natural question arises with reference to the basic design goals of any computer system:

Which of the following two models of computation should the system architecture target?

(i) A relatively smaller number of ‘heavier’ threads of computation, with one thread running per core, or
(i) A larger number of ‘lighter’ threads of computation, with multiple threads running per core.

Clearly, the choice depends on the class of applications for which the system architecture is being
designed. Opteron, UltraSparc T2 and TILE64 represent different possibilities in the number of execution
threads versus the processing power per thread. The architects of a computer system, knowing the targeted
application load, must make the right choice.

13.3.6 Intel Pentium Processors

Intel?*) 8088, used in the original IBM PC, was a 16-bit processor with 20-bit physical address, i.e. total
physical address space of 1 megabyte. Logical memory space consisted of four segments—namely, code,
data, stack and extra segments. A 16-bit segment offset meant that each segment was limited to 64 kilobytes.
As VLSI technology advanced, successively upgraded members of the so-called x86 processor
family—80286, 80386 and 80486—had larger memory address space, 32-bit word size, higher clock
frequencies, on-chip cache and memory management functions, and additional instructions, including floating
point instructions. Successive models of the immensely popular PC were built around these processots.
Therefore, maintaining backward compatibility of instruction set with earlier processors of the x86 family
has always been a non-negotiable design requirement of any new processor of the family, since all software
written for earlier versions of the PC had to run with its subsequent versions. This critical business requirement
pushed Intel processor designers to the limits of their ingenuity—since they had to achieve higher processor
performance with every mode!, while maintaining at all times full backward compatibility of instruction set.
With rapid advances in VLSI technology, as it became possible to build enormously more powerful
single-chip microprocessors, the spotlight turned on the critical role of the instruction set in achieving high

2% See hup:iwww.intel.com

664 Miiian Advanced Computer Architecture

performance, Benefits of the RISC approach soon became clear to processor designers, and all new processor
designs benefited from the new ideas. But the only way for the Intel x86 family of processors to maintain
backward compatibility in instruction set was to continue with its CISC approach.

Designers at Intel pushed the frontiers of VLSI technology to achieve higher processor performance while
maintaining backward compatibility. The original Pentium and its successors were introduced as advanced
sequels to the Intel 80486 processor. Even with the inherited CISC instruction set, these processors combined
standard RISC design techniques in their internal architecture—such as a micro-operation pipeline, multiple
functional units, and out-of-order scquencing.

Figure 13.12 is an overview of the architecture of the Pentium 4 processor.

The processor has two levels of cache memory—IL.1 and L2. The faster but smaller L1 cache is divided
into 8 kilobytes of instruction cache and & kilobytes of data cache, while the larger L2 cache is a combined
instruction and data cache of 256 or 512 kilobytes, depending on the processor model. The main memory
may also be provided with an additional off-chip L3 cache.

The Fetch/Decode unit {marked °A’ in the figure) is connected to the L1 instruction cache. This unit
fetches and decodes successive mstructions. producing several so-called micro-operations corresponding to
each machine instruction, These micro-operations are forwarded to the micro-operation buffer (marked ‘B’),
in which micro-operations produced by multiple machine instructions are buffered.

i to main memaory

L2
cache

¢ i to 110

| Bus interface unit I
L1 L1'D
cache cache
Execute unit

| [&
ALY/ L/s

Fetch/ . .

Decode L] FPU unit |- CO[:-T't
unit ¢ 5 urt

A

Reservation station
.
(&) { il

. Micro-operation buffer

Fig.13.12 Internal architecture of the Pentium 4 processor

For execution by specific functional uniis—such as the integer ALU or the FPU—micro-operations are
forwarded 1o a reservation station. An operation is performed in a unit when its operands become avatlable

Trends in Paraflel Systems " 5

and the functional unit becomes free. Execution of micro-operations need not follow the order in which
machine instructions are fetched. Data load and store operations on memory are carried out by the foad unit
and store unit, respectively, which operate as functional units connected to the L1 data cache.

The reservation station and the functional units together make up the execute unit of the processor (marked
‘C’). Within this execute unit, hardwired control is provided for the simpler instructions of the processor,
whereas complex instructions of the CISC type are provided with microprogram control. This is one of the
ways in which RISC and CISC approaches have been combined in the internal architecture of the processor.

When all the micro-operations of an instruction have been performed in the execute unit, the instruction
is commtitted (or retired)y to main memory. This work is carried out by the commit unit (marked ‘D), which
ensures that completed machine instructions are committed in the order in which they are fetched, as the
programmer expects.

Fetch/decode unit (‘A’), execute unit (‘B’) and commit unit {'I)’) operate in parallel, sharing the common
micro-operation buffer (*C’). Thus these three units can be said to form a *high-level’ pipeline through which
instructions pass. But each of these units is also implemented as a pipeline, so that multiple instructions can
be in each of these units at one time, each in a different stage of processing. Branch prediction logic, which
is required with the instruction pipeline, is also provided.

Memory management functions on the processor provide support for virtual memory using paging and/or
segmentation, as well as memory protection for user programs and the operating system; segmenis may be
shared between running programs.

(13.4]f PARALLEL PROGRAMMING MODELS AND LANGUAGES

With all the recent advances in the hardware architecture of high performance computer
systems—of which we have seen a few examples above—it is still a major challenge to map
an application program to make efficient use of the underlying hardware. Inability to achieve this aim results
in the gap between theoretical peak performance of a system and the actual application performance achieved
in practice.

To allow software designers to build parallel applications, one possibility is to provide so-called paralle!
constructs as extensions to sequential higher level languages. Chapters 10 and 11 of the book discuss some
of the relevant issues in this context.

But another exciting possibility is to design a new parallel programming language from first principles, to
provide parallel programming constructs which are based naturally on the way in which parallel algorithms
are conceived. We shall now see an example of this approach, a new parallel programming language being
designed at Cray.

13.4.1 Parallel Programming Language Chapel

Chapel is a new parallel programming language being developed by computer scientists at Cray Research.
The word Chapel has been derived from cascade high-productivity language—by taking the first letter of each
of these words and inserting a couple of helpful vowels. The project is currently at research and development
stage, in which several Universities and research centers are collaborating. The Chapel developer team
clearly indicates that it is open to work with other computer scientists interested in parallel programming.

666" . Advanced Computer Architecture

Chapel is one of three such parallel programming languages being developed in the US under the prestigious
High Productivity Computing Systems (HPCS) program, the other two being X10 being developed by IBM,
and Fortress by Sun Microsystemslz‘ﬂ.

The specific goals behind the development of Chapel are: programmer productivity, programmability of
parallel computers (improving over the older parallel programming models), better portability, and robustness
of the parallel programs developed. Target architectures for the parallel machine language programs generated
using Chapel are multi-core systems, computing clusters, as well as special high performance computing
platforms from Cray and other vendors.

Chapel is intended for general parallel programming; it provides high level abstractions for data-
parallelism, task-parallelism, and nested parallelism. The aim is that the language should allow all the broad
types of software parallelism to be expressed, and should be targeted towards general levels of hardware
parallelism.

Chapel provides global-view abstractions, 1.e. program structures which allow the source code to describe
the computation as a whole—rather than parallel fragments (such as processes or threads) that must be
somechow made to communicate and work together. The language provides for so-called multi-resolution
design, which means that the programmer has the choice of using higher level or lower level abstractions.
Control of locality is provided, so that data and computational threads can be placed at specific locations
within the parallel processing system.

Programs written in a language such as Chapel do not overtly depend on MPI (or similar) library of
communication or synchronization functions, since the semantics of parallel computations are provided in
the language itself.

Overt use of lower level functions in a program—such as those in MPI—does not hide communication
and synchronization mechanisms; such lower level functions thereby complicate programs and make them
error-prone and difficult to maintain. Compared to Chapel, parallel programming using MPI functions can
therefore be thought of as analogous to assembly language programming.

Language Features

Like C or JAVA, Chapel is a block-structured, typed language with imperative statements. Object-oriented
programming features are provided—similar to those in C or JAVA—but Chapel programs can also be written
without using these features; explicit manipulation of pointers is avoided. Parallel programming features in
Chapel are based on the features carlier intreduced in ZPL, HPF?* and Cray’s own parallel version of C/
Fortran developed for their MTA systems.

(@) Data Parallelism Data parallelism is supported with the use of domains, distributed domains and arrays,
and iterators based on index sets. In the example below, D is being defined as a 2-dimensional domain with
integer index values running from 1 to 4 and 1 to 8, respectively.

var m = 4, n = 8;

var D: domain(2} = [1..m, 1l..n];

1231 Eor more information, see htp://chapel.cray.com, http://x]0-lgng.org, and htip://projectfortress.sup.com

1251 See htp:/fwww.cs. washington.eduvesearch/zpl and http://hpffrice.edw/

Trends in Parallel Systems . 667

Now one or more arrays, with eleménts of any base type, can be defined using D as the underlying domain
which defines the array structure. For example:

var A, B: [D] real; // Note use of domain name D

Thus an array is created when each element of the underlying domain is mapped to a data element of the
base type, which is real in the example above. A sub-domain of a domain can also be defined, as in;

var InnerD: subdomain (D} = [2..m-1, 2..n-1];
var smallA: [InnerD] reszl;

The relationship between domains D and InnerD is clarified in Fig. 13.13.

/— domain D

\ domain InnerD

Fig.13.13 Relationship between domains D and InnerD

Domains or sub-domains can be used to govern iterations, as in:

feoer (i,3) in InnerD do
A(i,j) =1 + 3/10.0;

A shorthand notation for this same iteration is:
i(i,j) in InnerD] A(i,3) =1 + j/10.0;

Thus domains support data parallelism by defining index sets, based on which arrays can be defined, and
in controlling sequential and parallel loop iterations. Both data arrays and loop iterations can be distributed
across the multiple processing elements in the system.

An index set can be of one of three types:

(i) Arithmetic indices (seen above) define Cartesian tuples, and are similar to integer indices used in other
programming ianguages; an arithmetic index can optionally be made strided or sparse.
(ii) Associative indices have arbitrary values which serve as keys to hashed structures.
(iii) Opaque indices are anonymous, in the sense that nothing is said about the elements making up an
index set; such indices support the concept of unordered sets of elements.

Just as functions are defined, iterators can be pre-defined to yield successive values from an index set.
Such iterators can then be used for governing loop iterations which range over the defined index sets. A pre-
defined iterator can be used wherever loops with that particular iterative structure are needed in the program.

668 Tl Advanced Computer Architecture

(b) Task Parallelism Task parallelism is supported with the use of high level language features as well as by
lightweight synchronization operations. Synchronization variables are provided as a special type.

For example, readFE () operation on a synchronization variable causes the calling process to wait until
the variable is fif, and makes the variable empry after its value is read by the process.

Similarly, writeEF () operation on a synchronization variable causes the calling process to wait until
the variable is empty, and makes the variable full after its value is written.

Task parallelism is supported in both structured and unstructured forms. The keyword begin initiates a
separate thread executing the specified statement, as for example in:

begin runMyThread(};

No join operation is implied when a thread is initiated using begin. Structured thread invocation is
supported by, among others, the cobegin statement, as in:

cebegin |
myThread (1) :
myThread(2);
myThread({3) ;
}

Note that here an implicit join takes place at the end of the cobegin block.
The statement coforall executes loop iterations in paralle! threads, with an implied join, as in:

coforall 1 in 1..numThreads {
myThread (i}
}

As against this, the statement forall implies that iterations may be executed in parallel, depending on
the distribution of the concerned domain:

forall {i,j). in InnerD do
A(i,d)y = i + 3/10.0;

Concurrency can be inhibited explicitly, based on conditions specified. Azomic operations are supported.
An atomic operation is one which, when performed within one thread, appears atomic to all other threads in
the program—i.e. they cannot see any partial result produced by the atomic operation.

When a scalar operation or function is applied in parallel to all elements of an array, the operation is said to
involve promotion. Promotions are executed in parallel, with an implicit forall controlling the execution,
Given arrays A and E, a simple example of promotion is:

B =2 *A;

When an operator is applied to array elements to obtain a scalar value, the operation involves reduction
(see Section 13.2.2). An example of reduction in Chapel is:

sum = + reduce A; // find the sum of all elements in A

Trends in Parallel Systems 1Y)

Simple syntactic notation is also provided in Chapel for domain and array sficing; the definition of domain
InnerD above is an example.

As mentioned above, loop iterations are governed by domams or iterators; and, as we know, loops provide
huge potential for parailelism. Therefore several statements are provided in Chapel to specify the mode of
loop parallelism to be utilized.

As in C or JAVA, a for loop generates a single thread to execute all loop iterations. A coforall loop
generates a separate thread for each loop iteration. The third variant is a forall loop, in which some
number of threads are created for the loop iterations, as determined by the loop iterator expression, or by the
domain or array distribution.

A special type in Chapel known as Jocale is used to specify an architectural unit of locality of processing;
each locale is understood to have processing and memory functionality. In a system, this may refer to a
processing element (PE), as we have used the term in earlier chapters, or even a multi-core processor.

For a program running on N locales, the locales are numbered from 0 to N-1; execution of the program
begins with one task running on Iocale 0. The number of locales available to the program is specified on the
command line.

The statement:

on loc { statements }

causes the specified statements to be executed on the specified locale 1oc. The special locale named ‘here’
refers to the locale on which the reference is made.

A distribution is a2 mapping from domain or array indices to locales—i.e. it is the basic mechanism of
achieving data distribution across the locales. A ubiquitous variable can be created, with the semantics that
each locale has its own copy of the variable, i.¢. the variable is replicated on all locales.

Chapel programming language has initially been implemented using Chapel-to-C compilation, followed
by standard C compilation and use of support libraries. It is freely available as a download for research
purposes and/or for contributing to its further development and refinement.

In the earlier chapters of the book, we have discussed at some length topics such as compiler-detected
parallelism and dependence checking within array references in a loop. Tt should be noted that, when a
global-view parallel programming language such as Chapel is used, the function of the compiler changes
substantially. All the data and task parallelism in the program is now made evident in the program at a higher
level, and therefore detection of parallelism by the compiler is no longer the primary issue. The main goal
of the Chapel compiler is to efficiently map the defined parallel semantics of the source program onto the
underlying parallel processing hardware.

13.4.2 Function Libraries for Parallel Programming

Standardized functions which support a parallel programming paradigm offer a practical alternative to
programming language extenstons, because they can work with a range of programming languages, such as
C, C++ and Fortran. Since these sequential programming languages have already achieved a Jegacy position
in the computing profession, perhaps inevitably the standardization of parallel programming paradigms has
become partly separated from issues of language definition.

670" s Advanced Computer Architecture

We now look at several such standardized models of parailel programming, two based on the message-
passing model, one on shared memory multiprocessing and one on software multi-threading.

Message Passing Interface (MP]) Message Passing Interface (MPI){%] is widely used to build applications
for distributed memory as wel! as shared memory architectures. As we know, in the message passing mode of
interprocess communication, message data moves from the address space of one communicating process fo
the address space of the other communicating process, over the underlying communication layers.

The message passing operation requires both the communicating processes to issue appropriate function
calls. Typical point-to-point communication under MPI is carried out using the basic send and receive calls
MPI Send and MPI_Recv; but, as we shall see below, MPI offers much additional functionality as well.

It could be argued that interprocess synchronization and communication achieved through shared memory
operations—such as test-and-set—is more efficient than message passing. But the fact remains that message
passing offers a higher level abstraction for building parallel applications which is more robust against
processor speeds, types of interconnects, and so on. Message passing primitives can be provided on both
distributed and shared memory architectures, whereas it is not really practical to provide shared memory
primitives on a distributed memory system.

MPI supports the general MIMD model of parallel processing, as well as the more restricted single
program, multiple data (SPMD) version of parallelism. The interface is versatile encugh to support a high
performance computing platform, a lower cost network of computers, or even modern multi-core chips.
Amongst the original design goals of MP1 are source code portability and language independence.

The first version of MPI, known as MPI 1 standard, was published in 1994, supported by a consortium of
computer scientists and vendors. It is defined as a specification for a library of functions, available to vendors
and other groups for implementation. MPI 2 standard was published in 1998, with provision for additional
features such as dynamic process management, remote memory operations, and parallel I/O.

The underlying communication layer for MPI is often TCP/IP, although that is not part of the specification.
Given the nature of the message passing mechanism, support for heterogeneous environments is a major
natural benefit of the MPI platform.

Apart from basic interprocess message passing and synchronization, MPI provides several additional
facilities for the design of parallel applications, such as:

+ broadcast, gather and reduce operations

» barrier synchronization between processes

= user-defined topology over the processes

» user-defined data types for C, C++ and Fortran

» synchronous and asynchronous modes of communication
« buffered and unbuffered communication

An MPI application consists of multiple processes. Amongst these processes, various modes of
communication can be provided using the programming interface which is available through higher level
languages such as Fortran, C, and C++. Processes are mapped to hardware processors, which may be on the
same chip, the same system, or on different systems which communicate over a network.

(281 See hetp:/fwww.mpi-forum.org

Trends in Farallel Systems - 7]

Processes are grouped together into so-called communicators, within communicators, messages are sent
and received using functions such as MPI_Send and MPI Recv.

In Example 13.3 we saw that, with parallel processing, an associative operation—such as addition—can
be performed over » operands in log,n steps. In Figure 13.14, for implementing such an operation over eight
operands, we see a logical network topology in the shape of a binary tree. The number of time steps required
equals the height of the tree, which is log,8 = 3.

ao 34 as ag a4 35 33 as

Fig. 13.14 Tree-structured logical process topology

In Fig. 13.14, example process IDs are shown next to the circles which represent processes, while the eight
operands shown at the bottom are assumed to reside in the respective processes.

In the first step, four processes are performing the operation; in the second step, two processes are
performing the operation; and in the final step, the final result is produced by the process P0 which is shown
as the root node. As compared to Example 13.3, here we see the significance of the logical process topology
in terms of the specific interprocess communication required for a given application.

Let us suppose that the underlying physical network topology in this particular case is a 2-D torus (as in
Cray XT35). Then the communication pattern indicated above must be achieved through appropriate routing
over the underlying hardware interconnect. This would be part of the MPI implementation rather than its
specification.

If we count each upward arrow between processes in Figure 13.14 as one unit of communication, then
it is easy to see that the total amount of communication taking place, for the operation as indicated over
the # distributed operands, is (# — 1). The number of time steps required is logs#. Therefore the amount of
communication taking place per unit time is proportional to #/(log;n)}—i.e. it grows with increasing n.

This example clarifies further why very sophisticated inter-processor communication needs to be provided
on modern multiprocessor systems or multi-core chips, such as the Cray XT, IBM Blue Gene, and the TILE64
multi-core chip (see above).

openMP openMP—which stands for Open Multi-processing—is a standard API for parallel applications
based on the shared memory model of multiprocessingm]. As in the case of MPI, this standard is also defined
by a consortium of computer scientists and vendors. Like MPI, openMP is also a specification, for which any
multiple computer vendors or other groups can provide compliant implementations.

Achieving portability and scalability in shared memory parallel applications is a major aim of defining
the openMP standard. The first version of the standard was published in 1997, and the current version was

(27 See hap:/iwww.openMPorg

672" Advanced Computer Architecture

published in 2008. Language support defined within openMP includes C, C++ and Fortran. openMP makes
use of compiler directives which, if ignored, result in sequential execution of the underlying program.
Applications can be parallelized incrementally, and the granularity of parallelism may be coarse or fine.

The basic concept in openMP is that a master thread can generate so many slave threads, which may be
executed in parallel over available processors. Thus the basic parallel construct is a paired combination of
fork and join (see Chapter 10), with an implicit barrier at the point where the slave threads join. This basic
parallel construct may be nested, as shown in Figs. 13.15 and 13.16. There is no restriction that the number
of threads must equal the number of available processors,

!

master
thread

Yy ¥ L

n paraliel
threads

¥ ¥

master
thread

Fig.13.15 Master thread, siave threads, and implicit barrier

1 1

1 1

| 1

1 1

¥ R !

Vi 1
Yy ¥ [A : '.
ol H * one ofthe n

?hpar(aj ! + threads creates
reads - ! | multiple threads

2] ¥ . !]

Y SN :

1 [}

| 1

H t

1 1

Fig.13.16 Nesting of parallel constructs -

Thread memory may be made private or shared, and there is a flush operation available for shared
memory. A feature known as work-sharing allows assignment of independent loop iterations to separate
threads. Synchronization mechanisms such as critical section and explicit barriers are available; reduction
operation is also provided.

Trend: in Parallel Systems " 673

PThreads POSIX, or Portable Operating System Interface for UNIX, is an operating system interface
standard of IEEE which is supported by a large number of computer companies. PThreads—or POSIX
Threads—is the part of POSIX which pertains to the development of multi-threaded applications.

Functions and APIs are provided under PThreads for:

(1) Thread management—i.e. create and join threads, set and query thread attributes, etc.

(2) Mutex (mutual exclusion) variables—i.e. create, destroy, lock and untock operations, used for
synchronization amongst threads,

(3} Condition variables—to provide wait and signal communication between threads, and

(4) Synchronization—to provide read and write locks, and barrier synchronization.

Recall that under UNIX, threads exist within a process and use resources allocated to the process by the
operating system. Each thread has its independent thread context—PC, registers, thread status, etc.—but all
threads share the same process memory image. Once created, threads are peers, and may create other threads.
There is no implied hierarchy or dependency between threads. Processing load may be divided amongst
threads in a hierarchical model or a flat peer-to-peer model.

Using PThreads functions, the programmer must provide the required synchronization between threads.
Because of lower overheads in managing threads as compared to processes, multi-threading under Unix is
much more efficient than using multiple processes. Multithreading using PThreads is also more efficient than
MPI on the same processing element, or on a symmetric multiprocessor, because the multiple threads execute
out of the common shared memory of the process.

PYM (Parallel Virtual Machine) Parallel Virtual Machine (PVM) is a platform for distributed applications
developed at Oak Ridge National Laboratory in the US, in association with other Universities, in the late
1980s and early 1990s. The development was carried out as part of a larger research project into distributed
computing.

Under PVM, an application is conceived as a collection of tasks (in fact processes) which run in paraliel,
on one or more machines, and communicate by sending and receiving messages amongst themselves. Tasks
are identified by task IDs, and there is also provision for defining groups of tasks.

Heterogeneous processing environments are supported under PVM. A system seen as a virtual processing
element may be a single-processor system, a multiprocessor, a cluster, or any other type of processing resource.
The network underlying PVM may also be heterogeneous, in the sense of being made up of different types of
links. Machines—i.e. virtual processing elements—can be added or removed during operation of the PVM
system as a whole.

FVM can support functional parailelism, data parallelism or a combination of the two, using C, C++ and
Fortran languages. In many ways, PVM is similar to MPI, but, as we have seen in the case studies, MPI has
gained much wider acceptance amongst the community of users who develop parallel applications.

"4{} :’|
AL

\

Summary

Major trends and developments in computer- architecture are influenced strongly by (2) advances in’
underlying technology, and (b) growth In range of applications. We started the chapter with a brief

674‘“ Advanced Computer Architecture

review of some of the key technological advances wh:ch have had an smpact on processor and system
architecture over | the last couple of decades,

Steadily decreasing line widths and faster clock speeds have charactemed Vist technoioy Graphlcs
processors and displays have become far more sophisticated, thg ‘fise to major new applications such
as animation and multimedia. Magnetic disk storage densities and capacities have seen huge increases,
even as their cost, size and power consumption have been falling. And, with advances in electronics, signal
processing, and underlying communication technologies such as ﬁber oprics, ruly revolutionary advances
have been seep in system interconnect and network tedmo!ogpes. Hyper‘!’mnsport, PCI Express, Gigabit
Ethernet and 10 Gigabit | Ethemet are specnﬁc exarnpies _

The types of parallelism present in a program can be diwded brcadly into stmcmmi pamlfeh‘sm and
instruction level-poralielism (ILP}.-Processor- design: has - often been focused on exploiting ILF, but system
design—of a multiprocessor system, for example~has to be based on the type of structural paralielism
present in-the target applications. In this sense, the desagmrmustchaosebmmmreaggfmwe

-exploitation of ILP versus a larger number of processor: coresvdw Imaggmm exploiation of ILP.

The discussion of parafielism was continued-with a simple example, followed by 2 discussion of work

.done: by a paraliel algorichm; work-efficiency, efficient parallel: algorm'ms,and Brent's theorem. Stream
‘processing-is a newer form afpazauelﬁmwindtcan be exploited when the: target application—e.g.
- graphics, image or signal proc 'vdmmpmcewngafhmemmof&anm&e%mefdm-
'm%mdmwmﬁwpuwﬁ!umﬁowmm R

Many innovative high performance products—processors and systems—have emerged in recent years,
aimed at different target applications. Several representative products were discussed in this chapter in
the form of case studies. These included the Cray line of computers syszems and the Cray XT5 system;
PowerPC processor architecture, 1BM Power? processor and 1BM Blue Gene. supercomputer; Tilera’s
TILEM system-on-a-chip, Sun LHmSparcTz procusor,AMD Gptemn and Intel Pentium processors.

.. The parallel programming language Chapel, being developed by Cray under the prestigious HPCS
j:mgmn in'the US, was reviewed as an example of a global-view parallel programming language. For use
in’building parailel a?phcauons. comrent:onal pmgramming ianguages such as C, G++ and Fartran need
the support of function libraries for mterprocess ‘commuhication acnd syﬂchmnmuon Such libraries
use either shared mernory or message—passlng modeis as specuﬁc emmples. the salmnt feamres of MPl,

;openHPWH anﬂ’?hmds were dis:usseé

7

Problem 13.1 Explain in brief the meaning and the basis of development of newer VLS| fabrication
significance of line width in VLS technology.What are technology. Does your justification explain the ratios
the various line widths currently being used? of the line widths listed in answer to Exercise 17

Exercises

Problem 13.2 State and explain in brief Moore’s Problem 13.3 Faster clock speeds become
law. Justify this empirical law in brief, arguing on possible with advances in VLS! technology. What

Trends in Paraflel Systems

is the effect of faster clock speeds on power
consumption? Why is this an important issue in the
design of processors and computer systems?

Problem 13.4 Assume that a single processor
chip in a parallel system consumes 50 watts of power,
and that the system contains 1000 such processors.
Assume also that all other components in the system
consume, in aggregate, as much power as the 1000
processors.What is the total power consumption of
the system, in kilowatts? How many domestic irons,
operating together, will dissipate this much power?

Problem 13.5 For the system described in
Exercise 4, assume that air-conditioning and lighting
consume as much power as the computer system
itself, and that the cost of electric power is Rs, 6/-
per kilowatt-hour. What is then the monthly cost
of electric power for operating the system around
the clock?

Problem 13.6 In recent years it has been seen
that, beyond a point, processor performance does
not increase in proportion with clock speed. List
some of the trends in processor design resulting
from this basic factor related to VLS| technology.

Problem 13.7 What is off-chip inter-connect
delay? What is its significance in system design?

Problem 13.8 With advances in VLSI technology,
the total design cost of a VLS| processor has
increased enormously. ¥What has been the impact of
this increase on the way parallel processing systems
are designed?

Problem 13.9 Over the last two decades, with
advances in VLS| technology, processor speeds have
been increasing much faster than main memory
speeds. What has been the impact of this trend on
computer architecture?

Problem 13.10 A hand-held computing device
has to be provided with color graphics display
having a resolution of 300 x 400 pixels, with 3 x 8 =
24 bits of color information per pixel. The quality of

"R ;75

animation to be provided requires refresh rate of
30 frames per second, and an average of 2 arithmetic
operations are required per frame per pixel.
Calculate the graphics processing power needed, in
millien arithmetic operations per second, for this
particular application.

Problem 13.11 List the three different ways in
which multiple disks can be used in combination
in a RAID system, and the corresponding benefits
expected in terms of the performance of the storage
system.

Problem 13.12 in parallel processing systems
with multiple processors, there has been a trend
away from shared media interconnects to switched
media interconnects. Explain briefly the reasons
behind this trend.

Problem 13.13 List the salient technical
characteristics of HyperTransport interconnect
technology, and describe in brief its possible
application in a multiprocessor system.

Problem 13.14 Llist the salient technical
characteristics of Low Voltage Differential Signaling
(LVDS), and the performance benefits which it
provides.

Problem 13.15 Contrast the salient characteris-
tics of PCl and PCl Express interconnect standards.

Problem 13.16 List the salient technical features
of Gigabit Ethernet, and explain in brief the meaning
and utility of the concept of Qualty of Service (QoS).

Problem 13.17 Describe in brief the concept, ap-
plications and benefits of cluster computing.

Problem 13,18 What do you understand by
structural paralfelism in a parallel program? List the
different possible forms of structural parallelism
which we have studied. Contrast this concept with
instruction level parallelism (ILP), and discuss whether
there are any trade-offs involved in processor and/
or system design between supporting these different
types of parallelism.

676 =

Problem 13.19 Define in brief the meaning of
virtualization, and explain why this concept is closely
related to hardware support for multi-threading.

Problem 13.20 Example 13.2 discusses a two-
dimensional numerical integration. Outline how you
would extend this concept to three-dimensional in-
tegration, wherein a function f{xy.z) of three vari-
ables is integrated over a volume of integration de-
fined by limits Xmin, Xmax, Ymin, Ymax, Zmin and
Zmax along the three axes X,Y and Z respectively.
Justify the number of processors used in various
phases of the algorithm.

Problem 13.21 Define the work performed by
a parallel algorithm.When can we say that a parallel
algorithm is work-efficient with respect to another
algorithm? When is a parallel algorithm optimal?

Problem 13.22 Two versions of matrix multipli-
cation algorithm are shown in Example 1.5. Justify
these two versions as either being or not being op-
timal.

Problem 13.23 When do we say that a parallel
algorithm is efficient? Are the matrix multiplication
algarithms of Example 1.5 efficient?

Problem 13.24 State Brent's theorem. Explain in
brief its significance and underlying assumption(s).

Problem 13.25 List the characteristics of stream
processing using a schematic diagram of processing
kernels and data streams. List three typical applica-
tions of stream processing, and the stated goals of
the research project Merrimac at Stanford University.

Problem 13.26 Draw a block diagram and list
the salient features of the Fermi stream processor
introduced by Nvidia. List the advantages of using
a stream processor as against using ASIC(s) and
FPGA(s) for a given application.

Problem 13.27 Describe in brief the salient
features of:

{(a) Cray XMT supercomputer

{b) IBM Power7 processor

Advanced Computer Architecture

{c) IBP Blue Gene supercomputers.

Problem 13.28 State in brief the salient features
of Cray XT5 supercomputer; draw a schematic
diagram of the 2D torus system interconnect,
showing the different types of nodes which are
connected.

Problem 13.29 Recall that PowerPC defines
a processor architecture rather than a processor
itself. List the salient features of PowerPC processor
architecture.

Problem 13.30 Describe the salient features
of Tilera’s TILE64 system-on-a-chip, and the use of
iMesh network to realize cache coherent NUMA
architecture. Draw the schematic block diagram of
a single tile.

Problem 13.31 A single processing tile in the
TILE&4 system does not involve very aggressive
exploitation of ILP. Justify why this is the right choice
in the context of the overall system design and the
typical target applications.

Problem 13.32 Using a block diagram, describe
in brief the salient features of the Sun UltraSparc
T2 processor. Is the processor more suitable for
intensive scientific and engineering computations,
or for commercial servers and virtualization? Justify
your answer in brief.

Problem 13.33 Describe in brief the salient
features of the AMD Opteron processor. Comment
briefly on whether such a processor should provide
hardware support for multi-threading.

Problem 13.34 Compare and contrast the
architectures of TILE64, Sun UltraSparc T2,and AMD
Opteron processors.

Problem 13.35 Using a block diagram, describe
in brief the salient features of Intel’s Pentium IV
processor. List the processor features designed for
exploiting [LP. What are micro-cperations? Why was
it necessary to introduce that concept in the VLS|
implementation of the processor?

Trends in Parallel Systems

Problem 13.36 Parallel programming language
Chapel claims to support a global view of parallel
programming, Explain this concept in brief,
contrasting it with a fragmented view of paraliel
programming.

Problem 13.37 Explain in brief the concept of
domain and subdomain in Chapel, giving an example
of each. Show how a domain can be used in loop
control,

Problem 13.38 In parallel programming language
Chapel, describe in brief the functions of:

(a) begin, cobegin, coforall and on
statements,

{b) readFE and writeEF synchronization opera-
tions, and

{c) Atomic operations.

Problem 13.39 Describe in brief the salient
features of MPI, openMF, PThreads and PYM models
for implementing parallel processing applications.

- 577

Problem 13.40 For a particular application,
processing must be carried out using a three-stage
software pipeline, as illustrated in Fig. 13.17. Note
that this modet of processing is justified if the ratio
of computation to communication is high.

In Fig. 13.17, Process A reads a record from a
database, and performs the first stage of processing
on it. It then sends the record to Process B for
the second stage of processing, and B then sends
the record to Process C. After the third stage of
processing, Process C writes the processed data to
another database. Each process works only on one
record at a time; in other words, multiple records
are not buffered in any process, and there is no
muiti-threading within any process.

Design and implement this system using MPL,

Problem 13.41 How will the system design
of Exercise 39 change if each process has a buffer
which stores N records? What are the likely benefits
of making this change?

Process A Process B Process C
Read Receive Receive Write
from meene Send TR to database
database

Fig.13.17 Schematic of application for Exercise 39

Answers to Selected Exercises

Provided below are brief or partial answers to a few selected exercise problems. These answers are meant for
readers to verify the correctness of their answers. Derivations or detailed computational steps in obtaining
these answers are left for readers.

Exercise 1.1 Average CPI = 1.55. Effective processor performance = 258 MIPS. Execution time = 3.87 ms.

Exercise 1.4
(a) Average CPI=2.24
(b) MIPS rate =178.6

Exercise 1.8
{a) Sequential execution time = 1664 CPU cycles.
{b) SIMD execution time = 26 machine cycles.
{c) Speedup factor = 64.

Exercise 2.5
@ (e 6
\
A
(b) S, and 85 need to use the same Store Unit in accessing the memory. Therefore they are potentially
storage-dependent,

Exercise 2,11
(@) |Network |d |D| ! {(dxDxI)" | Rank
Torus |66 1192 | 1/6912 2
6-cube |66 |192 1/6912 2
CCC 31996 1/2592 1

Torus 2.67
6-cube 2.67
CCC 3.67

(b) | Network | Mean Internode Distance | Rank
1
1
2

630“ Answers to Selected Exercises

Exercise 2.14

(a) A4 x4 switch has 256 legitimate input-output connections, 24 of which are permutations.

(b) A 64-input Omega network requires the use of 48 4 x 4 switches in 3 stages, with 16 switches per
stage. Interstage connections are 4-way shuffles, 24* permutations can be implemented in one pass
through the network.

(¢) The percentage of one-pass permutations equals 24% /641 = 1.4 x 1072

Exercise 3.2
(a) Effective speedup = 3. Vectorization ratio o= 0.75.
(b) New speedup = 3.43 with vector/scalar speed ratio = 18.
(c) a must be improved to 0.8,

Exercise 3.3
(a) MIPS rate = nx/[a+n(l - a)];
(b) a=096
Exercise 3.7
(a) Sequential execution time = 1,051,628 cycles.
{b} The speedup = 16.28.
(¢) Each processor is assigned 32 iterations balanced between the beginning and ending of the I-loop.
(d) The ideal speedup 32 is achieved.

Exercise 3.9

Machine Arithmetic Mean Harmonic Mean | Rank
Execution Time Execution Rate
A 4,00 us per instruction 0.25 MIPS
B 4,78 s per instruction 0.21 MIPS 3
C (.48 us per instruction 2.10 MIPS 1

Exercise 4.11
(a) Average cost ¢ = ()] + €282)/(s1 + 52).c = ¢ when 5, 5, and c;5; > 5.
(b) b, = hfl + (1 - h)tz.

_

h+(1-h)r

() h=0.99.

(c) E=

Exercise 4.15
(a) Hit ratio # = 16/33 for LRU policy.
(b) Hit ratio k = 16/33 for the circular FIFO policy.
(c) These two policies are equally effective for this particular page trace.

Exercise 4.17
(a) tep = 0.95¢, + 0.05¢,.

Answers to Selected Exercises " 59

(b) Total cost ¢ = ¢y8; + Ca89.
(c) s, cannot exceed 18.6 Mbytes, 1, = 420ns.

Exercise 5.12
@ L=filhict(1-h)b++1A-f)thg c+ (1 -h)((b+)] - fi) + (2b + O)f)).
(b) t::t = ta + (l - ﬁ)ﬂnv i
Exercise 5,13
{a) MIPS rate = px (1 + mix);
(b) x =583 MIPS;
(c) Effective MIPS = 1524.

Exercise 5.17
(a} There are 20 program orders: abcdef, abdeef, abdecf, abdefc, adbcef, adbecf, adbefc, adebef, adebfc,
adefbc, dabeef, dabecf, dabefc, daebef, daebfc, daefbe, deabef, deabfe, deafbc, defabe.
(b) Possible output pattern: 0111, 1011, and 1111. '
(c) Possible outputs are: 1001, 1011, 1101, 0110, 0111, 1110, and 1111.

Exercise 6.1 Under the favourable assumptions made, the time taken to initially fill the pipeline (i.e. 5 clock
cycles) is a negligible fraction of the total execution time. Therefore the speedup, efficiency and throughput
of the processor aimost equal 5, 1 and 1000 MIPS, respectively.

If we assume that the pipeline is flushed after every 100 instructions (on average), then 5 clock cycles
are lost out of every 100, leading to a 5% loss in speedup, efficiency and throughput; in this case, the three
answers are 4.75, .95 and 950, respectively.

Clearly the loss in speedup, efficiency and throughput will be greater if the pipeline is flushed more
frequently, e.g. after every twenty instructions on average.

Exercise 6.9
(a) Forbidden latency is 3 with a collision vector (100).
(b) State transition diagram is shown below:

(c) Simple cycle: (2), (4), (1.4), (1,1,4), and (2.4);
(d) Optimal constant latency cycle: (2), MAL = 2.
(e) Throughput =250 MIPS.

652 ik Answers to Selected Exercises

Exercise 6.15
(a) Speedup factor = 3.19:
(b) 62.5 MIPS for processor X and 199.2 MIPS for processor Y.

Exercise 6.17
(a) The four stages perform: Exponent subtract, Align, Fraction Add, and Normalize, respectively.
(b) 111 cycles to add 100 floating-point numbers.

Exercise 7.1
(a) Memery bandwidth = mc/(c + m)t =533 million words per second.
(b) Memory utilization = cm/(c + m) = 5.33 requests per memory cycle.

Exercise 7.4 A minimum of 21 time steps are needed to schedule the 24 code segments on the 4 processors,
which are updating the 6 memory modules simultaneously without conflicts. The average memory bandwidth
is thus equal to 70/21= 3.33 words per time step, where 70 accounts for 70 memory accesses by four
processors in 21 time steps without conflicts.

Exercise 7.14
{a) (101101) — (101100} — (101110) — (101010) - (111010) - (011010)

(b) Use either a route with a minimum of 20 channels and distance 9 or another route with a minimum
distance of 8 and 22 channels.

(¢) The following tree shows multicast route on the hypercube:

{1010} Source

/\

(0010) {(101)

(0000) (0011) (1111)

1

1101)

o
purd
ey
=y
—
—

}K

{0181) (1001) Note: The destinations are underlined

Exercise 8.12
(a) R, =2000/(10 — 90, in Mflops;
(b) Vectorization ratio &= 26/27 = 0.963;
(¢} R, =700 Mflops.

Exercise 8.13
(a) Serial execution time = 190 time units.

Answers 10 Selected Exercises " 683

(b) SIMD execution time = 35 time units.

Exercise 8.14

(a) C90 can execute 64 opreations per cycle of 4.2 ns, resulting a peak performance = 64/4.2 x 107" =
15.2 Gflops.

(b) Similarly NEC has a peak performance of 64/2.9 x 10~ = 22 Gflops.

Exercise 9.1

() E=1/(1+RL).

(b) B'=(1- MR E=1/(1+RKL)= [l +RL(1 - K)].

1 I

c) While N2N;= +1, = = .

© VR +C “ 14CR" 1+(-hCR
While NS N,y Bjo= — 8 N _ = N .

VR +C+L 1+RC+RL 1+(-h(L+OR

(d} The mean internode distance D = (r + 4)/3.

2wray _2p+d)
3

Thus L=2Dt,+1¢, = bt by = =7 tat 1y,
_ VR !
VYR +C 1+(-hCR
N N

Ejin

1+ (-WRL+C) |
1+(1- h)R{[EL[I;JF—“)td + 1,] + C]
Exercise 10.5

(@) A(5,8: *,*) declares A(5,8,1), A(5,9.1), A(5.10,1), A(5.8,2), A(5,9,2), A(5,10,2), A(5,§,3), A(5,9,3),
A(5,10,3), A(5,8,4), A(5,9.4), A(5,10.4), A(5,8,5), A(5.9.5), A(5,10,5). B(3:*:3,5:8) corresponds to
B(3,5), B(3.6). B(3,7), B(3,8), B(6.,5), B(6.6). B(6,7), B(6.8), B(9.5), B(9,6), B(9,7), B(9.8). C(*,3,4)
stands for C(1,3.4), C(2,3,4), C(3,3,4).

{b) Yes, no, no, and yes respectively for the four array assignments.

Exercise 10.7
(@ 51> & 5
(b) 5,: A(I:N)=B(:N)
§3: E(I:N)=C{(2:N+])
8: CLN)=A(Q:N)+B(I:N)
Exercise 10.12
(a) Vectorized code:
TEMP{1:N) = A(1:N)
A(2:N + 1)=TEMP(1:N) + 3.14159

684% Answers to Selected Exercises

(b) Parallelized code:

Doalll=1,N
If (A(D) .LE. 0.0) then
S=S+BI*CD
X =B
Endif
Enddo

Exercise 11.15
(a) Suppose the image is partitioned into p segments, each consisting of s = m/p rows. Vector histog is
shared among the processors. Therefore its update has to be performed in a critical section to avoid
race conditions. Assume it is possible protect each element of vector hisfog by a separate semaphore.
The following program performs paralle] histogramming:

Var pixel(0 :m—1,0:n -1}

Var histog(0 : - 1): integer;

Var lock(0: 5 1): [0,1];

histog(0 : - 1)=0;

lock(0:6-1}=1;

for k=0 until p — 1 0 Doall
fori=kxsuntil(k+1)xs—1de

for j =0 until » — 1 do

P(lock(pixel{i, /)
histog(pixel(i, j)) = histog(pixel{i,)) + 1;
V(lock(pixel(i, /)));
Enddo
Enddo
Endall

(b) The maximum speedup of the parallel program over the serial program is p, provided there is no
conflict in accessing the histog vector and the overhead associated with synchronization is negligible.
An alternative approach is to associate a local histog vector with each processor, which will obviate
the use of critical sections. At the end of the algorithm, the values in local histog vectors are added to
obtain the final result.

Exercise 12.9

Note: The aim in Chapter 12 has been to understand instruction level parallelism without reference to a
specific processor design. The stipulation of counting from the last clock cycle of instruction 1 has been added
to these exercises so that the instruction sequences can be analyzed without reference to a specific processor
pipeline design. Thus the answers we derive do not include the initial pipeline fill time, and we count only the
additional clock cycles needed to complete each instruction. .

Answers to Selected Exercises "R 585

Sequence 1: 1 LOAD mem-a, R1
2 LOAD mem-k, R2
3 LOAD mem-c, R3
4 FADD R2, R1, R1
5 FSUB R3, R1l, Rl

6 STORE mem-a, Rl

The directed graph of dépendences is shown below:

RAW(R1)

Exercise 12.10 Here we assume that the processor has no provision for register renaming and operand
forwarding, and that all memory references are satisfied from L1 cache.

In the absence of operand forwarding, every RAW hazard causes (at least) one lost clock cycle, as the
operand value is first written into the register and then, in the next cycle, brought to the functional unit or
load/store unit, _

Instruction 3 can be executed in parailel with instruction 4 (FADD).

We therefore add the additional clock cycles required for the rest of the instructions (other than instruction
3), and add one cycle penalty for every RAW dependence occurring along the dotted path. Thus the number
of cycles needed (from the last cycle of instruction 1) equals:

1+1+2+2+1+3*1=10

Exercise 12,11 Effect of register renaming:
No WAR or WAW dependences are affecting the computation, and therefore register renaming will not yield
any additional parallelism in this particular instance.

Exercise 12.12 and 12.13 Effect of operand forwarding:

With operand forwarding, the FPU or memory store unit receives its required operand value in the same cycle
in which it is written in the register. Therefore the three cycles lost due to RAW dependences are saved, and
the answer is:

686* Answers to Selected Exercises

I+1+42+2+1=7

Exercise 12.14 Effect of L1 cache miss, requiring L2 cache access of 5 clock cycles:

L1 cache miss on instruction 1 or 2 will cost 5 — 1 = 4 additional clock cycles each.

L1 cache miss on instruction 3 will cost 5 — 2 = 3 additional clock cycles, since 2 cycles out of five are in
parallel with FADD of instruction 4.

Exercise 12.15 Outline of Tomasulo's algorithm: For every possible source of an operand within the
processor, assume a tag value. For example, assume a tag value of TFPU for the output of FPU, and TLOAD
for the output of memory load unit,

For every RAW dependence, if the operand value is not available, the algorithm requires the source tag
value to be written into the destination tag register. When the operand value is available on the CDB (along
with the right tag value), it is copied into every destination register where it is required, i.e. where the source
and destination tag values match. :

However, in this case the memory load unit requires special care, since its successive outputs from
instructions 1, 2 and 3 go (respectively) to the two inputs of FPU for instruction 4, and then again an input of
FPU for instruction 5. One way to handle this would be to assign multiple tag values to the output of memory
load unit, and use different values for the three load operations of instructions 1, 2 and 3.

Exercise 13.39 and 13.40 Note that the first two processes make up one producer-consumer pair, and the
last two processes make up another producer-consumer pair. Process B consumes the records produced by
process A, and process C consumes the records produced by process B. The solutions require two applications
of the standard producer-consumer algorithm. '

Bibliography

[AccettaB6] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian, and M. Young, “Mach: A New Kermnel
Foundation for UNIX Development,” Proc. Summer 1986 USENIX Conf.. pp. 93-113, Atlanta, GA, June 1986.

[ACM91] ACM, Resources in Parallel and Concurrent Systems with an Infroduction by Charles Seitz, ACM Press, New
York, 1991.

[Acosta86] R. D. Acosta, J. Kjelstrup, and H. C. Torng, “An Instruction Issuing Approach to Enhancing Performance in
Multiple Functional Unit Processors,” IEEE Trans. Computers, pp. 815-825, Sept. 1986,

[Adam74] T. L. Adam, K. M. Chandy, and J. R. Dickson, “A Comparison of List Schedules for Parallel Processing
Systems,” Commun. ACM, 17(12):685-690, 1974.

[Adve90] S. V. Adve and M. D. Hill, “Weak Ordering: A New Definition,” Proc. [7th Annu. Int, Symp. Computer Arch.,
1990.

[Adve91] S. V. Adve, V. S. Adve, M. D. Hill, and M. Vernon, “Comparison of Hardware and Software Cache and
Coherence Schemes,” Proc. 18th Annu. Int. Symp. Computer Arch., pp. 298-308, 1991.

[Agarwal®8] A. Agarwal, R. Simoni, J. Hennessy, and M. Horowitz, “An Evaluation of Directory Schemes for Cache
Coherence,” Proc. 15th Annu. Int. Symp. Computer Arch., 1988.

[Agarwal90]A. Agarwal, B.H. Lim, D. Kranz, andJ. Kubiatowicz, “APRIL: A Processor Architecture for Multiprocessing,”
Proc. 17th Annu. Int. Symp. Computer Arch., pp. 104-114,1990.

[Agarwal?1] A. Agarwal, D. Chaiken, G. D’Souza, K. Johnson, D. Kranz, J. Kubiatowicz, K. Kurihara, B. H. Lim, G.
Maa, D. Nussbaum, M. Parkin, and D. A. Yeung, “The MIT Alewife Machine: A Large-Scale Distributed-Memory
Multiprocessor,” Proc. Workshop Multithreaded Computers, Supercomputing 91, 1991

[Agarwal92a] A. Agarwal, “Performance Tradeoffs in Multithread Processors,” fEFE Trans. Parallel Distri. Systems,
3(5):525-539,1992.

[Agarwal92b] A. Agarwal, D. Chaiken, K. Johnson, D. Kranz, J. Kobiatowicz, K. Kurihara, B. Lim, G. Maa, and D.
Mussbaum, “The MIT Alewife Machine: A Large-Scale Distributed-Memory Multiprocessor,” in Dubois and
Thakkar (eds.), Scalable Shared-Memory Multiprocessors, Kluwer Academic Publishers, Boston, MA, 1992,

[Agha86] G. Agha, Actors: 4 Model of Concurrent Computation in Distributed Systems, MIT Press, Cambridge, MA,
1986.

[Agha90] G. Agha, “Concurrent Object-Oriented Programming,” Commun. ACM, 33(9):125-141, Sept. 1990.

[Aho74] A. Aho, J. E. Hoperoft, and J. D. Ullman, The Design and Analysis of Computer Algorithms, Addison-Wesley,
Reading, MA, 1974.

[Ahuja86] S. Ahuja, N. Carriero, and D. Gelemnter, “Linda and Friends,” IEEE Computer, 19(8):16-34, 1986.

[Allan85] S. J. Allan and R. Oldehoeft, “HEP SISAL: Parallel Functional Programming,” in Kowalik (ed.), Parallel!
MIMD Computation: HEP Supercomputers and Applications, MIT Press, Cambridge, MA, 1985,

[Allen84] J. R. Allen and K. Kennedy, “PFC: A Program to Convert Fortran to Parallel Fortran,” in Hwang (ed.),
Supercomputers: Design and Applications, IEEE Computer Society Press, Los Alamitos, CA, 1984,

536‘ Bibliography

[Allen87] R. Allen and K. Kennedy, “Automatic Translation of Fortran Programs te Vector Form,” ACM Trans. Prog.
Lang. and Systems, pp. 491-542, Oct. 1987.

[Alliant89] Alliant, Alfiant Product Summary, Alliant Computer Systems Corporation, Littleton, MA, 1989.
[Almasi89] G. S. Almasi and A. Gottlieb, Highly Parallel Computing, Benjamin/Cummings, Redwood, CA, 1989.

[Alverson90] R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Porterfield, and B. Smith, “The Tera Computer
System,” Proc. ACM Int. Conf. Supercomputing, pp. 1--6, Amsterdam, The Netherlands, June 1990.

[Amdahl67] G. M. Amdahl, “Validity of Single-Processor Approach to Achieving Large-Scale Computing Capability,”
Proc. AFIPS Conf,, pp. 483—485, Reston, VA., 1967,

[Anaratone$6] M. Anaratone, E. Amould, T. Gross, H. T. Kung, M. 8. Lam, O. Menzilcioglu, K. Sarocky, and J. A. Webb,
“Warp Architecture and Implementation,” Proc. 13th Annu. Int. Symp. Computer Arch., pp. 346--356, Tokyo, June
1986.

[Anderson67] D. W. Anderson, J. G. Earle, R. E. Goldschmidt, and D. M. Powere, “The IBM System/360 Model 91:
Floating-Point Execution Unit,” IBM Systems Journai, pp, 34-53, Feb. 1967.

[Andrews91] G. R. Andrews, Concurrent Programming: Principles and Practice, Benjamin/Cummings, Redwood, CA,
1991.

[Archibald86] J. Archibald and J. L. Baer, “Cache Coherence Protocols: Evaluation Using a Multiprocessor Simulation
Model,” ACM Trans. Computer Systems, 4(4):273-298, Nov. 1986.

[Arden81] B. W. Arden and H. Lee, “Analysis of Chordal Ring Network,” JEEE Trans. Computers, 30(4):.291-293, 1981.

{Arvind83] Arvind and R. A. lannucci, “A Critique of Multiprocessing von Neumann Style,” Proc. 10th Symp. Computer
Arch., Stockholm, Sweden, 1983,

[Arvind84] Arvind, D. E. Culler, R. A. lannucci, V. Kathail, K. Pingali, and R. E. Thomas, “The Tagged Token Dataflow
Architecture,” Technical Report, MIT Laboratory for Computer Science, 545 Technology Square, Cambridge, MA
02139, 1984,

[Arvind87] Arvind and R. A. Jannucci, “Two Fundamenta! Issues in Multiprocéssing,“ Proc. Farallel Processing on
Science and Engineering, 1987.

[Arvind90] Arvind and R. S. Nikhil, *Executing a Program on the MIT Tagged-Token Dataflow Architecture,” [EEE
Trans. Computers, 39(3):300-318, 1990.

[Arvind91] Arvind, L. Bic, and T. Ungerer, “Evolution of Dataflow Computers,” in Gaudiot and Bic {eds.), Advanced
Topics in Dataflow Computing, pp. 3-34, Prentice-Hall, Englewood Cliffs, NJ, 1991,

[Athas88] W. C. Athas and C. L. Seitz, “Multicomputers: Message-Passing Concurrent Computers,” IEEE Computer,
21(8):9-24, Aug. 1988.

[Axelrod86] T. S. Axelrod, “Effects of Synchronization Barriers on Multiprocessor Performance,” Parallel Computing,
3(2):129-140, May 1986.

[Babb88] R. G. Babb, Programming Parallel Processors, Addison-Wesley, Reading, MA, 1988.

[Bach84] M. J. Bach and S. J. Buroff, “Multiprocessor UNIX Operating Systems,” AT&T Bell Lab. Tech. Journal, 63(8),
Oct. 1984,

[Bach86] M. J. Bach, The Design of the UNIX Operating System, Prentice-Hall, Englewood Cliffs, NJ, 1986.
[Baer80] J. L. Baer, Computer Systems Architecture, Computer Science Press, Rockville, MD, 1980.

[Banerjee79] U. Banerjee, Speedup of Ordinary Programs, Ph.D. thesis, University of Illinois, 1979.

[Banerjee88] U, Banetjee, Dependence Analysis for Supercomputing, Kluwer Academic Press, Boston, MA, 1988,

[Bamnes68] G. H. Bames, R. M. Brown, M. Kato, D. J. Kuck, D. L. Slotnick, and R. A. Stokes, “The ILLIAC IV
Computer,” IEEE Trans. Computers, pp. T46-757, Aug. 1968.

Bibliography - 459

[Batcher76] K. Batcher, “The Flip Network in STARAN,” Proc. Int. Conf. Parallel Processing, pp. 65-71, 1976.
{Batcher80] K. E. Batcher, “Design of a Massively Parallel Processor,” IEEE Trans. Computers, pp. 836-840, Sept. 1980.
[BBN8Y]. BBN Advanced Computers Inc., Cambridge, MA., TC2000 Techrical Product Summary, Nov. 1989.

[Beetemn85] J. Beetem, M. Denneau, and D. Weingarten, “The GF11 Supercomputer,” Proc. 12th Annu. Int. Symp.
Computer Arch., pp. 363-376, Boston, MA, May 1985.

[Bell92] G. Bell, “Ultracomputer: A Teraflop Before Its Time,” Comnrun. ACM, 35(8):27-47, 1992,

[Ben-Ari%0] M. Ben-Ari, Principles of Concurrent and Distributed FProgramming, Prentice-Hall, Englewood Cliffs, NJ,
1990

[Bernstein66] A. J. Bemstein, “Analysis of Programs for Parallel Processing,” IEEE Trans. Computers, pp. 746-757,
Oct. 1966.

{Berntsen%0] J. Berntsen, “Communication-Efficient Matrix Multiplication on Hypercubes,” Parallel Computing,
pp- 335-342, 1990,

[Bhuyan83] L. N. Bhuyan and D. P. Agrawal, “Design and Performance of Generalized Interconnection Networks,” [EEE
Trans. Computers, pp. 1081-1090, Dec. 1983.

[Bisiani88] R. Bisiani and M. Ravishankar, “Plus: A Distributed Shared-Memory System,” Proc. 17th Annu. Int. Symp.
Computer Arch., pp. 115-124, 1988.

[Bitar86] P. Bitar and A. M. Despain, “Multiprocessor Cache Synchronization: Issues, Innovations, and Evolution,” Proc.
13th Annu. Int. Symp. Computer Arch., 1986.

[Bitar?1] P. Bitar, “MIMD Synchronization and Coherence,” Technical Report UCB/CSD 90/605, University of
California, Berkeley, May 1991,

{Bitar92] P. Bitar, “The Weakest Memory-Access Order,” J. Para, Distri, Computing, 15:305-331, 1992.

[Black90] D. L. Black, “Scheduling Support for Concurrency and Parallelism in the Mach Operating System,” IEEE
Computer, 23(5):35-42, May 1590.

[Blelloch90] G. E. Blellach, Vector Models for Data-Parallel Computing, MIT Press, Cambridge, MA, 1990,

[Blevins90] D. W. Blevins, E. W. Davis, R. Heaton, and I. H. Reif, “BLITZEN: A Highly Integrated Massively Parallel
Machine,” J. Para. Distri. Computing, pp. 150-160, 1990.

[Boothe92} B. Boothe and A. Ranade, “Improved Multithreading Techniques for Hiding Communication Latency in
Multiprocessor,” Proc. {9th Annu. Int. Symp. Computer Arch., Australia, May 1992.

{Borkar90] S. Borkar, R. Cohn, G. Fox, T. Gross, H. Hung, M. Lam, M. Levine, B. Moore, W. Moore, C. Peterson, J.
Susman, J. Sutton, J. Urbanski, and J. Webb, “Supporting Systolic and Memory Communication in iWARP,”" Proc.
17th Annu. Int. Symp. Computer Arch., pp. 70-81, May 1990,

[Brainerd90} W. S. Brainerd, C. H. Golberg, and J. C. Adams, Programmer s Guide to Fortran 90, McGraw-Hill, New
York, 1990.

[Brawer89] S. Brawer, Introduction to Paralle! Programming, Academic Press, New York, 1989.

[Briggs82] F. A. Briggs, K. S. Fu, K. Hwang, and B. W. Wah, “PUMPS Architecture for Pattern Analysis and Image
Database Management,” IEEE Trans. Computers, pp. 969-982, Oct. 1982,

[Brinch Hansen75] P. Brinch Hansen, “The Programming Language Concurrent Pascal,” IEEE ‘Trans. Software
Engineering, SE-1(2):199-206, June 1975.

[Brunner90] R. A. Brunner, D. P Bhandarkar, F. X. McKeen, B. Patel, W. J. Rogers, and G. L. Yoder, “Vector Processing
on the VAX 9000 System,” Digital Technical Journal, 2(4):61-79, 1990.

[Burkhardi32] H. Burkhardt, Technical Summary of KSR-1, Kendall Square Research Corporation, 170 Tracer Lane,
Waltham, MA 02154, 1992.

690 Vil Bibliography

[Butler9i] M. Butler, T. Y. Yeh, Y. Patt, M. Alsup, H. Scales, and M. Shebanow, “Single-Instruction-Stream Parallelism
is Greater Than Two,” Proc. 18th Annu. Int. Symp. Computer Arch., pp. 276-286, 1991.

[Buzbees3] B. L. Buzbee et al, “Supercomputing Value and Trends,” unpublished slide presentation, Los Alamos
National Laboratory, NM, July 1983.

{Callahan85] D. Callahan, “Task Granularity Studies on a Many-Processor CRAY X-MP” Parallel Computing,
pp. 109-118, June 1985.

[Callahan88] D. Callahan, K. Cooper, R. Hood.K, Kennedy, and L. Torczon, “ParaScope: A Parallel Programming
Environment,” Int. J. Supercomputer Appl.. 2(4), 1988.

[Caswell90] D. Caswell and D. Black, “Implementing a Mach Debugger for Multithread Applications,” Proc. Winter
1990 USENIX Conf,, Washington, DC, Jan. 1990.

[CDC80) CDC, Cyber 200/Model 205 Technical Description, Control Data Corporation, Nov. 1980.

[CDC90] CDC, “Introduction to Cyber 2000 Architecture,” Technical Report 60000457, Control Data Corporation, St.
Paul, MN, 1990.

[Cekleovd0] M. Cekleov, M. Dubois,]. C. Wang, and F. A. Briggs, “Virual-Address Cache in Multiprocessors,” in
Dubois and Thakkar (eds.), Cache and Interconnect Architectures in Multiprocessors, Kluwer Academic Press,
Boston, MA, 1990,

[Censier78] L. M. Censier and P. Feautrier, “A New Solution to Coherence Problems in Multicache Systems,” IEEE
Trans. Computers, C-27(12):1112-1118, Dec. 1978.

[Chaiken90] D. Chaiken, C. Fields, K. Kwihara, and A. Agrawal, “Directory-Based Cache Coherence in Large-Scale
Multiprocessor,” JEEE Computer, 23(6):49-59. 1990.

[Chang88] A. Chang and M. F. Mergen, “801 Storage: Architecture and Programming,” 4CM Trans. Computer Systems.
6(1):28-50, 1988.

[Chang90] L. C. Chang and B, T. Smith, “Classification and Evaluation of Parallel Programming Tools,” Technical
Report CS 90-22, University of New Mexico, Albuquerque, NM 87131, 1950.

[Chang91] P. P. Chang, W. Y. Chen, S. A. Mahlke, and W. M Hwu, “Computing Static and Dynamic Code Scheduling for
Multiple-Instruction-Issue Processors,” Proc. 24th Int. Symp. Microarch., 1991.

[Cheng89] H. Cheng, “Vector Pipelining, Chaining, and Speed on the IBM 3090 and Cray XYMP,” [EEE Computer,
22(9):31-44, 1989.

[Cheng91] D. Y. Cheng, “A Survey of Paraliel Programming Tools,” Technical Report RND-91-005, NASA Ames
Research Center, Moffett Field, CA, 1991,

[Chin84] C. Y. Chin and K. Hwang, “Packet Switching Networks for Multiprocessors and Dataflow Computers,” IEEE
Trans. Computers, pp. 991-1003, Nov. 1984.

[Chow74] C. K. Chow, “On Optimization for Storage Hierarchies,” IBM.J. Res. and Develop., pp. 194-203, 1974,

[Christy90] P. Christy, “Software to Support Massively Parallel Computing on the MasPar MP-1,” Digest of Papers
Spring Compeon, San Francisco, CA, Feb. 1990.

[Clark83] K. L. Clark and S. Gregory, “Parlog: A Parallel Logic Programming Language,” Technical Report DOC 83-5,
Dept. of Computing, imperial College, London, May 1983.

[Clark86] R. S. Clark and T. L. Wilson, “Vector System Performance of the IBM 3090,” IBM Systems Journal, 25(1),
1986.

[Cocke90} J. Cocke and V. Markstein, “The Evolution of RISC Technology at IBM,” IBM J. Res. and Deoelop., 34(1):
4-11, 1990. :

[Convex90] Convex, Fortran Optimization Guide, Convex Computer Corporation, Richardson, TX,1990.

Bibliography - o)

[Cormen90] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, MIT Press, Cambridge, MA,
199¢.

[Cragon89] H. G. Cragon and W. J. Watson, “The TI Advanced Scientific Computer,” /EEE Computer. 22(1):55-64,
1989.

{Cragon92a] H. G. Cragon, Branch Strategy Taxonomy and Performance Models, IEEE Computer Society Press, Los
Alamitos, CA, 1992,

[Cragon92b] H. G. Cragon, “Memory Systems and Pipeline Processors,” Class notes, Department of ECE, University of
Texas, Austin, 1992.

{Crawford90]). H. Crawford, “The i486 CPU: Executing Instructions in One Clock Cycle,” IEEE Micro, 10(1):27-36,
Feb. 1990.

[Cray77] Cray, CRA ¥-I Computer System Hardware Reference Manual, Cray Research Institute, 1977,
[Cray89] Cray, The Cray Y/MP Functional Description Manual, Cray Research Inc., Eagan, MN,1989,
[Cray91] Cray, The Cray YIMP C-90 Supercomputer System, Cray Research Inc., Eagan, MN,1991.
[Cray92] Cray, Cray/MPP Announcement, Cray Research, Inc., Eagan, MN, 1992.

[CSRD91] CSRD, “Perfect Club Benchmark Evaluation Package,” Technical report, Center for Supercomputer Research
and Development, University of Illinois, Urbana, 1991,

{Cybenko92] G. Cybenko and D). J, Kuck, “Revolution or Evolution,” JIEEE Spectrum, 29(9):39-41, 1992,
[Dally86] W. J. Dally and C. L. Seitz, “The Torus Routing Chip,” Jourral of Distributed Computing, 1(3):187-196, 1986.

[Dalty87a] W. J. Dally et al., “Architecture of a Message-Driven Processor,” Proc. 14th Annu. Int. Symp. Computer Arch.,
pp. 189-205, IEEE CS Press, June 1987,

{Dally87b] W. 1. Dally and C. L. Seitz, “Deadlock-Free Message Routing in Multiprocessor Interconnection Network,”
{ECE Trans. Computers, C-36(5).547-553, May 1987, :

[Dally87c] W. J. Dally and P. Song, “Design of a Self-Timed VLSI Multicomputer Communication Controller,” Proc. Int.
Conf. Computer Design, pp. 230-234, IEEE CS Press, Oct. 1987,

[Dally90a] W. 1. Dally, “Network and Processor Architecture for Message-Driven Computers,” in Suaya and Birtwistle
(eds.), VLSI and Parallel Computation, Chapter 3, Morgan Kaurmann, San Mateo, CA, 1990.

[Dally90b] W. J. Dally, “Performance Analysis of k-ary n-Cube Interconnection Networks,” [EEE Trans. Computers,
39(6):775-~-785, 1990.

[Dalty90c] W. J. Dally, “Virtual Channel Flow Control,” Proc. 17th Annu. Int Symp. Computer Arch., pp. 6068, May
1990.

[Dally92] W. J. Dally, J. Fiske, J. Keen, R. Lethin, M. Noakes, P. Nuth, R. Davison, and G. Fyler, “The Message-Driven
Processor: A Multicomputer Processing Node with Efficient Mechanisms,” JEEE Micro, 12(2):23-39, Apr. 1992.

[Davidson71} E. S. Davidson, “The Design and Control of Pipelined Function Generators,” Proc. Int. IEEE Conf. System
Networks and Computers, pp. 19-21, 1971,

[Davidson75] E. S. Davidson, D. P. Thomas, L. E. Shar, and J. H. Patel, “Effective Control for Pipelined Computers,”
Proc. COMPCON, pp. 181-184, 1975.

[DECR6] DEC, “The Whetstone Performance,” Technical report, Digital Equipment Corporation, Bedford, MA, 1986.
[DEC92} DEC, “Alpha Architecture Handbook,” Technical report, Digital Equipment Corporation, Boxboro, MA, 1992,

[DeCegamma89] A. L. DeCegamma, The Technology of Parallel Processing: Architectures and VLSI Hardware,
Prentice-Hall, Englewood Cliffs, NJ, 1989.

[Dekel81] E. Dekel, D. Nassimi, and S. Sahni, “Parallel Matrix and Graph Algorithms,” SIAM J. Computing, pp. 657
673, 1981.

692" M- Bibliography

[Denning68) P. . Denning, “Working Set Model for Program Behaviot,” Commun, ACM, 11(6):323-333, 1968.
[Dennisg0] J. B. Dennis, “Data Flow Supercomputers,” IEEE Computer, pp. 48-56, Nov. 1980.

{Dennis91] J. Dennis, “The Evolution of “Static” Dataflow Architecture,” in Gaudiot and Bic (eds.), Advanced Topics in
Dataflow Computing, pp. 35-91, Prentice-Hall, Englewood Cliffs, NJ, 1991.

[Diefendorfi92] K. Diefendorff and M. Allen, “Organization of the Motorola 88110 Superscalar RISC Microprocessor,”
IEEE Micro, 12(2):40-63, Apr. 1992.

[Dijkstra68] E. W, Dijkstra, “Cooperating Sequential Processes,” in Genuys (ed.), Programming Languages, Academic
Press, New York, 1968.
[Dinning89] A. Dinning, “A Survey of Synchronization Methods for Parallel Computers,” IEEE Computer, 22(7), 1989.

[Dongarra86) J. J. Dongarra and D. C. Sorensen, “SCHEDULE: Tools for Developing and Analyzing Parallei Fortran
Programs,” Technical Memo 86, Argonne National Laboratory, 1986.

{Dongarra89] J. Dongarra and A. Hinds, “Comparison of the Cray X/MP-4, Fujitsu VP-200, and Hitachi S-810/20,"
in Hwang and DeGroot (eds.), Parallel Processing for Supercomputing and Artificial Intelligence, pp. 285-323,
McGraw-Hill, New York, 1989. '

[Dongarra92] J. Dongarra, “Performance of Various Computers Using Standard Linear Equations Software,” Technical
report, Computer Science Department, University of Tennessee, Knoxville, TN, 1992.

[Dubois86] M. Dubois, C. Scheurich, and F. A. Briggs, “Memory Access Buffering in Multiprocessors,” Proc. 13th Annu.
Int. Symp. Computer Arch., pp. 434442, 1986.

[Dubois88] M. Dubois, C. Scheurich, and F. A. Briggs, “Synchronization, Cohetence and Event Ordering in
Multiprocessors,” [EEE Computer, 21(2), 1988.

[Dubeis90a] M. Dubois and F. A. Briggs, “Tutorial Notes on Shared-Memory Architectures for Multiprocessors,” Proc.
17th Symp. Computer Arch., Seaitle, WA, 1990.

[Dubois®0b] M. Dubois and S. Thakkar (eds.), Cache and Interconnect Architectures in Multiprocessors, Kluwer
Academic Publishers, Boston, MA, 1990,

[Dubois92a] M. Dubois, “Delayed Consistency,” in Dubois and Thakkar (eds.), Scalable Shared-Memory Multiprocessors,
Kluwer Academic Publishers, Boston, MA, 1992.

[Dubois92b] M. Dubois and S. Thakkar (eds.), Scalable Shared-Memory Multiprocessors, Kluwer Academic Publishers,
Boston, MA, 1992.

[Eager89] D. L. Eager, J. Zahorjan, and E. D. Lazowska, “Speedup Versus Efficiency in Parallel Systems,” IEEE Trans.
Computers, 38(3):408—423, Mar. 1989.

[Edenficld90] R. Edenficld, M. Gallup, W. Ledbetter, R. McGarity, E. Quintana, and R. Reininger, “The 68040 Processor:
Part 1. Design and Implementation,” [EEE Micro, 10(1):66-78, Feb. 1990.

[Emma87] P. G. Emma and E. S. Davidson, “Characterization of Branch and Data Dependences in Programs for
Evaluating Pipeline Performance,” IEEE Trans. Computers, 36:859-875, 1987.

[Encore87] Encore, Multimox Technical Summary, Encore Computer Corporation, Ft. Lauderdale, FL, Mar. 1987.
[Enslow74) P. H. Enslow (ed.), Multiprocessors and Parallel Processing, Wiley, New York, 1974.

[Felten85] E. Felten, S. Karlin, and S. W. Otto, “The Traveling Salesmanon a Hypercube MIMD Computer,” Proc. Int.
Conf. Parallel Processing, St. Charles, IL, Aug. 1985.

[Feng81] T. Y. Feng, “A Survey of Interconnection Networks,” IEEE Computer, 14{12): 12—27, 1981.

[Ferrante87] M. W. Ferrante, “Cybesplus and Map V Interprocessor Communications for Parallel and Amray Processor
Systems,” in Karplus (ed.), Multiprocessors and Array Processors, Simulation Councils, Inc., San Diego, CA, 1987.

Bibliography - 593

(Fisher81] J. A. Fisher, “Trace Scheduling: A Technique for Global Microcode Compaction,” IEEE Trans. Computers,
30(7):478-49¢, 1981.

[Fisher83] J. A, Fisher, “Very Long Instruction Word Architectures and the ELI-5 12,” Proc, 10th Symp. Computer Arch.,
pp- 140-150, ACM Press, New York, 1983.

[Flynn72] M. J. Flynn, “Some Computer Organizations and Their Effectiveness,” IEEE Trans. Computers, 21(9):948—
960, 1972,

[Fortune78] §. Fortune and J. Wyllie, “Parallelism in Random Access Machines,” Proc. ACM Symp. Theory of Computing,
pp- 114-118, 1978, .

[Fox87] G. C. Fox, 8. W. Otto, and A. J. Hey, “Matrix Algorithms on Hypercube (I): Matrix Multiplication,” Parafle!
Computing, pp. 17-31, 1987.

[Fujitsu®0] Fujitsu, ¥P2000 Series Supercomputers, Fujitsu Ltd., Japan, 1990.

(Fujitsu92] Fujitsu, ¥PP500 Vector Parallel Processor, Fujitsu America, Inc., San Jose, CA, 1992.

[Galski®2] D. D. Gajski, D. Padua, D. J. Kuck, and R. H. Kuhn, “A Second Opinion on Dataflow Machines and
Languages,” IEEE Computer, 15(2), 1982.

[Gajski85] D. D. Gajski and J. K. Peir, “Essential Issues in Multiprocessor Systems,” JEEE Computer, 18(6), 1985.

[Gaudiot91] J.-L. Gaudiot and L. Bic, Advanced Topics in Dataflow Computing, Prentice-Hall, Englewcod Cliffs, NJ,
1991.

[Gelernter85a] D. Gelemter, “Generative Communication in Linda,” ACM Trans, Prog. Lang. and Systems, 7(1):80—
112, Jan. 1985.

[Gelernter85b] D. Gelernter, N. Carriero, S. Chandran, and S. Chang, “Parallel Programming in Linda,” Proc. Int. Conf.
Parallel Pracessing, pp. 255-263, 1985.

[Gelernterd0] D. Gelemnter, A. Nicolau, and D. Padua, Languages and Compilers for Parallel Computing, MIT Press,
Cambridge, MA, 1990.

[Gharachorleo90] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, and J. Hennessy, “Memory Consistency and
Event Ordering in Scalable Shared-Memory Multiprocessors,” Proc. {7th Annu. Int. Symp. Computer Arch., June
1990.

{Gharachorloo91] G. M. Gharachorloo and K. R. Traub, “Multithreading: A Revisionist View of Dataflow Architecture,”
Proc. 18th Annu. Int. Symp. Computer Arch., May 1991,

[Gharachorloo92a} K. Gharachorloo, S. Adve, A. Gupta, J. L. Hennessy, and M. Hill, “Programming for Different
Memory Consistency Models,”.J. Para. Disiri. Computing, Aug. 1992.

[Gharachorlo092b] K. Gharachorloo, A. Gupta, and J. L. Hennessy, “Hiding Memory Latency Using Dynamic Scheduling
in Shared-Memory Multiprocessors,” Proc. 19th Annu. Int. Symp. Computer Arch., Gold Coast, Australia, May
1992,

{Gharachorlo092¢] K. Gharacherloo, A. Gupta, and J. L. Hennessy, “Performance Evaluation of Memory Consistency
Models for Shared-Memory Multiprocessors,” Proc. Fourth Int. Conf. Arch. Support for Prog. Lang. and OS, 1992.

[Gjessing92] 8. Gjessing, G. B. Gustavson, J. R. James, and E. H. Kristiansen, “The SCI Cache Coherence Protocol,” in
Dubois and Thakkar (eds.), Scalable Shared-Memory Multiprocessors, Kluwer Academic Publishers, Boston, MA,
1992

[Glass92] C. J. Glass and 1. M. Ni, “The TURN Model for Adaptive Routing,” Proc. 19th Anmu. Int. Symp. Computer
Arch, 1992,

[Goble81] G. H. Goble and M. H. Marsh, “A Dual-Processor UNIX VAX 11/780,” Technical report, Dept. of Electrical
Engineering, Purdue University, West Lafayette, IN, Sept. 1981.

694 Bibliography

[Goff91] G. Goff, K. Kennedy, and C. W. Tseng, “Practical Dependence Testing,” Proc. ACM SIGPLAN Conf. Prog.
Lang. Design and Implementation, 1991.

[Goodman83] J. R. Geodman, “Using Cache Memory to Reduce Processor-Memory Traffic,” Proc. [0th Symp. Computer
Arch., pp. 124-131, June 1983.

[Goodman88] J. R. Goodman and P. Woest, “The Wisconsin Multicube: A New Large-Scale Cache-Coherent
Multiprocessor,” Proc. 15th Annu. Int. Symp. Computer Arch., pp. 422-431, 1988,

[Goodman$9] J. R. Goodman, M. K. Vernon, and P. J. Woest, “Efficient Synchronization Primitives for Large-Scale
Cache-Coherent Multiprocessors,” Proc. Third Int. Conf. Arch. Support for Prog. Lang. and OS, pp. 6473, 1989,

[Goodman90] J. R. Goodman, “Cache Consistency and Sequential Consistency,” Technical Report 61, IEEE SCI
Committee, 1990.

[Goor89] A. J. van de Goor, Computer Architecture and Design, Addison-Wesley, Reading, MA, 1989,

[Gottlieb83] A. Gottlieb, R. Grishman, C. P. Kruskal, K. P. McAuliffe, L. Rudolph, and M. Snir, “The NYU Ultracomputer—

Designing an MIMD Shared Memory Paraliel Computer,” [EEE Trans. Computers, C-32(2):175-189, February
1983.

[Goyal84] A. Goyal and T. Agerwala, “Performance Analysis of Future Shared-Storage Systems,” IBM J. Res. and
Develop. pp. 95-98, Jan. 1984,

[{Graham92] S. Graham, J. .. Hennessy, and J. D. Ullman, “Course on Code Optimization and Code Generation,” in
Tutorial on Code Optimization and Generation, Western Institute of Computer Science, Stanford University, Aug.
1992.

[Graunke90] G. Graunke and S. Thakkar, “Synchronization Algorithms for Shared-Memory Multiprocessors,” /EEE
Computer, 23(6).60-69, 1990.

[Greenberg89] R. I. Greenberg and C. E. Leiserson, “Randomized Routing on Fat Trees,” Advances in Computing
Research, 7:345-374, 1989.

[Gross®3] T. R. Gross, “Code Optimization Techniques for Pipelined Architectures,” Proc. IEEE Computer Society
Spring Int. Conf., pp. 278-285, 1983.

[Gupta90] A. Gupta, W. D. Weber, and T. Mowry, “Reducing Memory and Traffic Requirements for Scalable Directory-
Based Cache coherence Schemes,” Proc. Int. Conf, Parallel Processing, pp. 312-321, 1990.

[GuptaS1] A. Gupta, J. L. Hennessy, K. Gharachorloo, T. Mowry, and W. D. Weber, “Computative Evaluation of Latency
Reducing and Tolerating Techniques,” Proc. [8th Annu. Int. Symp. Computer Arch., pp. 254-263, Toronto, May
1991.

[Gupta92] A. Gupta and V. Kumar, “Scalability of Parallel Algorithms for Matrix Multiplication,” Technical report,
University of Minnesota, 1992.

[Gupta93) A. Gupta and V. Kumar, “The Scalability of FFT on Parallel Computers,” IEEE Trans. Parallel Distri. Systems,
to appear in 1993.

[Gurd85] . R. Gurd, C. Kirkham, and J. Watson, “The Manchester Prototype Dataflow Computer,” Commun. ACM,
28(1):3645, 1985,

[Gustafson86] J. 1. Gustafson, 5. Hawkinson, and K. Scott, “The Architecture of a Homogeneous Vector Supercomputer,”
Proc. Int. Conf. Parallel Processing, pp. 649-652, 1986.

[Gustafson88] J.L. Gustafson, “Reevaluating Amdahl’s Law,” Commun. ACM, 31(5).532-533, May 1988.

{Gustafson91] J. Gustafson, D. Rover, S. Elbert, and M. Carter, 'The Design of a Scalable, Fixed-Time Computer
Benchmark,” .J. Para. Distri. Computing, 11, Aug. 1991,

[Gustavson86] D. B. Gustavson, “Introduction to the Fastbus,” Microprocessors and Microsystem, 10(2).77-85, 1986.

Bibliography "_— 595

[Hagersten92] E. Hagersten, A. Landin, and S. Haridi, “Multiprocessor Consistency and Synchronization Through
Transient Cache States,” in Dubois and Thakkar {eds.}, Scalable Shared-Memory Multiprocessors, Kluwer Academic
Publishers, Boston, MA, 1992.

[Halstead85] R. H. Halstead, Jr., “Multilisp: A Language for Concurrent Symbolic Computation,” ACM Trans. Prog.
Lang. and Systems, 7(4):501-538, Oct. 1985 .

[Harrison90] W. Harrison, B. Kramer, W. Rudd, $. Shatz, C. Chang, Z. Segall, D. Clemmer, J. Williamson, B. Peek, B.
Appelbe, K. Smith, and A. Kolawa, “Teols for Multiple-CPU Environments,” /EEE Sofiware, 7(3):45-51, May
1990.

[Hayes86] J. P. Hayes, T. N. Mudge, Q. F. Stout, 8. Colley, and J. Palmer, “Architecture of a Hypercube Supercomputer,”
Froc. Int. Conf. Parallel Processing, pp. 653-660, 1986.

{Heath87] M. T. Heath, “Hypercube Applications at Oak Ridge National Laboratory,” Heath {ed.), Hypercube
Multiprocessors, SIAM, Philadelphia, 1987.

[Hellerman67] H. Hellerman, Digital Computer System Principles, McGraw-Hill, New York, 1967.

{Hennessy90] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Approach, Morgan Kaufmann,
San Mateo, CA, 1990,

[Hennessy92] J. L. Hennessy, “Introduction to a Tutorial on Code Optimization and Generation,” WICS, Stanford
University, 1992.

[Hertzberger84] L. O. Hertzberger, “The Architecture of the Fifth-Generation Inference Computers,” Future Generation
Computer Systems, 1(1):19-21, July 1984,

[Hill92] M. D. Hill, “What Is Scalability?,” in Dubois and Thakkar (eds.), Scalable Shared-Memory Multiprocessors,
Kluwer Academic Press, Boston, MA, 1992.

[Hillis86] W. D. Hillis and G. L. Steele, “Data Parallel Algorithms,” Comnun. ACM, 29(12):1170-1183, 1986.

(Hiraki87] K. Hiraki, K. Nishida, S. Sekiguchi, T. Shimada, and T. Yiba, “The SIGMA-] Dataflow Supercomputer: A
Challenge for New Generation Supercomputing Systems,” J. Info. Processing, 10(4):219-226, 1987.

{Hirata92] H. Hirata, K. Kimura, S. Nagamine, Mochizuki, A. Nishimura, and Y. Nakase, “An Elementary Processor
Architecture with Simultaneous Instruction Issuing from Multiple Threads,” Proc. 19th Annu. Int. Symp. Computer
Arch., 1992,

[Hoare74] C. A. R. Hoare, “Monitors: An Operating System Structuring Concept,” Commun. ACM, 17(10):349--557,
Oct. 1974,

[Holt78} R. C. Holt, G. S. Graham, E. D. Lazowska, and M. A. Scott, Structured Concurrent Programming with Operating
Systems Applications, Addison-Wesley, Reading, MA, 1978.

{Homewood87] M. Homewood, D. May, D. Shepherd, and R. Shepherd, #“THE IMS T800 Transputer,” JEEE Micro,
7(5):10-26, Oct. 1987. '

[Hord90] R. M. Hord, Paralle! Supercomputing in SIMD Architectures, CRC Press, Boca Raton, FL, 1950,

[Horwat89] W. Horwat, “Concurrent Smalltalk on the Message-Driven Processor,” Master’s thesis, Laboratory for
Computer Science, MIT, 1989.

{Hotchips91] Hotchips, Proc. Hot Chips III Symp. on High-Performance Chips, Stanford University, Palo Alio, CA,
1991,

[Hwang77] K. Hwang and S. B. Yao, “Optimal Batched Searching of Tree-Structured Files in Muitiprocessor System,”
J. ACM, pp. 441454, July 1977.

[Hwang78] K. Hwang, Computer Arithmetic: Principles, Architecture and Design, Wiley, New York, 1978,

[Hwang82a] K. Hwang and Y. H. Cheng, “Partitioned Matrix Algorithms for VLSI Arithmetic Systems,” IEEE Trans.
Computers, pp. 1215-1224, Dec. 1982.

696 il Bibtiogrophy

[Hwang82b] K. Hwang, W. Croft, G. H. Goble, B. W. Wah, F. A. Briggs, W. Simmeons, and C. L. Coates, A UNIX-Basad
Local Area Network with Load Balancing,” [EEE Computer, 15(4):55-66, 1982.

[Hwang84] K. Hwang and F. A. Briggs, Computer Architecture and Parallel Processing, McGraw-Hill, New York, 1984.

(Hwang87a) K. Hwang, “Advanced Parallel Processing with Supercomputer Architectures,” Proc. IEEE, vol. 75, Oct.
1987.

[Hwang87b] K. Hwang and J. Ghosh, “Hypemet: A Communication-Efficient Architecture for Constructing Massively
Paralle! Computers,” IEEE Trans. Computers, 36:1450-1466, Dec. 1987.

[Hwang87¢] K. Hwang, J. Ghosh, and R. Chowkwanyun, “Computer Architectures for Al Processing,” I[FEE Computer,
pp. 19-29, Jan. 1587.

[Hwang88] K. Hwang and Z. Xu, “Multipipeline Networking for Compound Vector Processing,” [EEE Trans. Computers,
37(1):33-47, 1988.

{Hwang89a] K. Hwang and D. DeGroot (eds.), Parallel Processing for Supercompulers and Artificial Intelligence,
McGraw-Hill, New York, 1989.

[Hwang89b] K. Hwang, P. S. Tseng, and D. Kim, “An Orthogonal Multiprocessor for Parallel Scientific Computations,”
IEEE Trans. Computers, C-38(1):47-81, Jan. 1989.

{Hwang90] K. Hwang et ak,, “OMP: A RISC-based multiprocessor Using Orthogonal Access Memories and Muitiple
Spanning Buses,” Proc. ACM Int. Conf. Supercomputing, pp. 7-22, Amsterdam, The Netherlands, June 1990.

{Hwang91] K. Hwang and S. Shang, “Wired-NOR Barrier Synchronization for Designing Shared-Memory
Multiprocessot,” Proc. Int. Conf. Parallel Processing, St. Charles, IL, Aug. 1991.

[Hwu91] W. M. Hwu, “Tutorial Notes on Compiler Support for Superscalar Processors,” Proc. 18th Anru. Int. Symp.
Computer Arch., Torento, 1991

{lannucci88] R. A. lannucei, 4 Dataffow/von Neumann Hybrid Architecture, Ph.D. thesis, MIT Laboratory for Computer
Science, 545 Technology Square, Cambridge, MA 02139, 1988.

{IBM90a] IBM, RISC System/6000 Technology, IBM Advanced Workstations Division, IBM Austin Communications
Dept., Austin, TX, 1990.

[IBM90b) IBM, System/390 Processors, System Functions, International Business Machines, White Plains, N, 1990.
[{EEE&5] IEEE, Standard 754, Order No. CN-953, IEEE Computer Society Press, Los Alamitos, CA, 1985.

[IEEE%1] IEEE, Fururebust. Logical Layer Specifications, §96.1-1991, Microprocessor Standards Subcommittee,s
IEEE Computer Society, 1991.

{Intel84] Intel, Multibus Il Bus Architecture Specification Handbook, Intel Corporation, Santa Clara, CA, no. 146077-c,
1984.

[Intel90] Intel, Supercompilers for the (PSC/860. Technical Summary, Intel Scientific Computers, Beaverton, OR, 1990.

[Inte!91] Intel, Paragon XP/S Product Overview, Supercomputer Systems Division, Intel Corporation, Beaverton, OR
97006, 1991.

[James90a] D. D. James, A. T. Laundrie, S. Gjessing, and G. S. Sohni, “Scalable Coherence Interface,” IEEE Computer,
23(63:74-77, 1990.

[James90b] D. V. James, A. T. Laundrie, S. Gjessing, and G. S. Sohi, “Distributed-Directory Scheme: Scalable Coherent
Interface,” IEEE Computer, 23(6).74-T7, 1990.

[Jermoluk90] T. Jermoluk, Muftiprocessor UNIX. Silicon Graphics Inc., Santa Clara, CA, 1990.
[Johnson91] M. Johnson, Superscalur Microprocessor Design. Prentice-Hall, Englewood Cliffs, NJ,1991.

[Johnsson90] L. Johnsson, *C ommunication in Network Architectures,” in Suaya and Birtwistle (eds.), VLSI and Parallel
Computation, Morgan Kaufmann, San Mateo, CA, 1990.

Bibliography " 97

{Jones80] A. K. Jones and P. Schwarz, “Experience Using Multiprocessor Systems-—A Status Report,” ACM Computing
Survey, 12(2):121-165, 1980.

[Jones86] M. B. Jones and R. F. Rashid, “Mach and Matchmaker: Kermnel and Language Support for Object-Oriented
Distributed Systers,” Proc. OOPSLA 1986, pp. §7-77, Portland, OR, Sept. 1586.

[Jordan83] H. F. Jordan, “Performance Measurement on HEP—A Pipelined MIMD Computer,” Proc. [0th Symp.
Computer Arch., pp. 207-212, 1983,

[Jordan36] H. F. Jordan, “*Structuring Parallel Algorithms in an MIMD, Shared Memory Environment,” Parallel
Computing, pp. 93110, May 1986.

[Jouppi89] N. P. Jouppi and D. W. Wall, “Available Instruction-Level Parallelism for Superscalar and Superpipelined
Machines,” Proc. Third Int. Conf. Arch. Support for Prog. Lang. and OS, pp. 272-282, ACM Press, New York, 1989.

{Kallstrom88] M. Kallstrom and S. S. Thakkar, “Programming Three Paraliel Computers,” IEEE Software, pp. 11-22,
Jan. 1988.

[Kane88] G. Kane, MIPS R2000 RISC Architecture, Prentice-Hall, Englewood Cliffs, NJ, 1988,

{Karp66] R. M. Karp and R. E. Miller, “Properties of a Mode] for Parallel Computations: Determinacy, Termination,
Queucing,” SIAM J. Appl. Math., pp. 1390-1411, Nov. 1966.

{Karp88] R. M., Karp and V. Ramachandran, “A Survey of Complexity of Algorithms for Shared-Memory Machines,”
Technical Report 408, University of California, Berkeley, 1988,

[Katz90] R. H. Katz and J. L. Hennessy, “High-Performance Microprocessor Architectures,” Int. J. High-Speed
Electronics, 1(1), Jan. 1990,

[Kawabe87] S. Kawabe et al., “The Single Vector-Engine Supercomputer S-820,” Nikkei Electronics, pp. 111--125, 1987.

[Kermani79] P. Kermani and L. Kleinrock, “Virtual Cut-Through: A New Communication Switching Technique,”
Computer Networks, 3(4):267-286, 1979.

[Kodama9Q] Y. Kodama, S. Sakai, and Y. Yamaguchi, “A Prototype of Highly Parallel Datafiow Machine EM-4 and Its
Preliminary Evaluation,” Prof. Info., Japan, 1990.

[Kogge81] P. M. Kogpe, The Architecture of Pipelined Computers, McGraw-Hill, New York, 1981.

[Kowalik85] J. S. Kowalik (ed.), Parallel MIMD Computation: HEP Supercomputer and Applications, MIT Press,
Cambridge, MA, 1985.

[Kruatrachue88] B. Kruatrachue and T. Lewis, “Grain Size Detenmination for Parallel Processing,” JEEE Software,
5(1):23-31, Jan. 1988.

[KSR91]1 KSR, KSR-1 Overview, Internal Report, Kendall Square Research Corporation, 170 Tracer Lane, Waltham, MA
02154, 1991.

[Kuck78] D. J. Kuck., Tke Structure of Computers and Computations, Wiley and Sons, New York, 1978,

[Kuck82] D. J. Kuck and R. A. Stekes, “The Burroughs Scientific Processor (BSP),” IEEE Trans. Computers, pp. 363—
376, May 1982.

[Kuck84] D. J. Kuck, R. H. Kuhn, B. Leasure, and M. Wolfe, “The Structure of an Advanced Retargetable Vectorizer,”
in Hwang (ed.), Supercomputers: Design and Applications, IEEE Computer Society Press, Los Alamitos, CA, 1984.

[Kuck86] D. J. Kuck, E. S. Davidson, D. H. Lawrie, and A. H. Sameh, *Parallel Supercomputing Today-The Cedar
Approach,” Science, 231(2), Feb. 1986.

[Kurmar87] V. Kumar and N. Rao, “Parallel Depth-First Search, Part I1: Analysis,” Int. J. Para. Programming, 16(6):501—
519, 1987.

[Kumar88] M. Kumar, “Measuring Parallelism in Computation-Intensive Scientific/Engineering Applications,” IEEE
Trans. Computers, 37(9).1088-1098, 1988.

&os Tl Bibliography

[Kumar90] V. Kumar and V. Singh, “Scalability of Parallel Algorithms for the All-Pairs Shortest Path Problem,” Proc.
Int. Conf. Parallel Processing, pp. 136140, 1990.

[Kumar92] V. Kumar and A. Gupta, “Anatyzing Scalability of Parallel Algorithms and Architectures,” Technical Repott
AHPCRC 92-020, Army High-Performance Computing Research Center, University of Minnesota, Minneapolis,
MN, 1992,

[Kung78] H. T. Kung and C. E. Leiserson, “Systolic Amays (for VLSI),” Duff and Stewart (eds.), Sparse Matrix
Proceedings, Knoxville, TN, 1978, SIAM, Philadelphia.

[Kung80] H. T. Kung, “The Structure of Parallel Algorithms,” in Yovits (ed.), Advances in Computers, vol. 19,
pp. 65112, Academic Press, New York, 1980.

[Kung841 S. Y. Kung, “On Supercomputing with Systolic and Wavefront Array Processors,” Proc. /EEE, pp. 867-884,
July 1984.

[Kung88] S. Y. Kung, ¥LS!I Array Processors, Prentice-Hall, Englewood Cliffs, NJ, 1988.

[Kung90] H. T. Kung, “How to Move Parallel Processing into the Mainstream,” Proc. First Workshop on Paraflel
Processing, Taiwan, China, Dec. 1990.

[Lam88] M. S. Lam, “Software Pipelining: An Effective Scheduling Technique for VEIW Machines,” Proc. ACM
SIGPLAN Conf. Prog. Lang. Design and Implementation, pp. 318-328, 1988.

[Lam92] M. 8. Lam, “Tutorial on Compilers for Parallel Machines,” Western Institute of Computer Science, Stanford
University, 1992.

[Lamport78] L. Lamport, “Time, Clock, and Ordering of Events in a Distributed System,” Commun. ACM, July 1978.

[Lamport79] L. Lamport, “How to Make a Maltiprocessor Computer That Correctly Executes Multiprocess Programs,”
IEEE Trans. Computers, 28(9):241-248, 1979.

[L.an90] Y. Lan, A. H. Esfahanian, and L. M. Ni, "Multicast in Hypercube Multiprocessors,” J. Para. Distri. Computing,
pp- 3041, Jan. 1990.

fLang82] T. Lang, M. Valero, and L Alegre, “Bandwidth Analysis of Crossbar and Multiple-Bus Contentions for
Multiprocessors,” IEEE Trans. Compurers, pp. 1227-1233, Jan. 1982.

[Larson73] A. G. Larson, “Cost-Effective Processor Design with an Application to FFT,” Technical Report SuU-
SEL-73-037, Stanford University, Aug. 1973.

[Larson84] J. L. Larson, “Multitasking on the Cray X-MP-2 Multiprocessor,” /EEE Computer, pp. 6269, July 1984.

[Laudon92] I. Laudon, A. Gupta, and M. Horowitz, “Architectural and Implementation Tradeoffs in the Design of
Multiple-Context Processors,” Technical Report CSL-TR-92-523, Computer Systems Laboratory, Stanford
University, Stanford, CA 943054055, 1992.

[Lawrie75] D. H. Lawrie, “Access and Alignment of Data in a Array Processor,” IEEE Trans. Compulers, Dec. 1975.
[Leasure90] B. Leasure, PCF Fortran Extension, Kuck & Associates, Champaign, IL 61820, 1990.

[Lee80] R. B. Lee, “Empirical Results on the Speedup, Efficiency, Redundancy, and Quality of Parallel Computations,”
Proc. Int. Conf. Parallel Processing, pp. 91-96, Aug. 1980.

[Lee84] . K. Lee and A. Smith, “Branch Prediction Strategies and Branch Target Buffer Design,” [EEE Computer,
17(1):6-22, 1984,

[Leiserson85] C. E. Leiserson, “Fat-Trees: Universal Networks for Hardware-Efficient Supercomputing,” IEEE Trans.
Computers, 34:892-901, 1985,

[Leiserson92] C. E. Leiserson et al., “The Network Architecture of the Connection Machine CM-5,” Proc. ACM Symp.
Parallel Algorithms and Architecture, San Diego, CA, 1992.

[Lenoski®0] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy, “The Directory-Based Cache Coherence
Protocol for the DASH Multiprocessor,” Proc. I7th Annu. Int. Symp. Computer Arch., pp. 148-159, 1990.

Bibliography "R 599

[L.enoski92} D. Lenoski, J. Laudon, K. Gharachorloo, W. D. Weber, A. Gupta, J. Hennessy, M. Horowitz, and M, Lam,
“The Stanford Dash Multiprocessor,” IEEE Computer, pp. 63-79, Mar. 1992,

[Lewis32] T. G. Lewis and H. E}-Rewini, Introduction to Parallel Computing, Prentice-Hall, Englewood Cliffs, NJ, 1992,

[Li85] K. C. Li and H. Schwetman, “Vectorizing C: A Vector Processing Language,” J. Para. Distri. Computing,
2{2):132-169, May 1985.

[Li86] K. Li, “Shared Virtual Memory on Loosely Coupled Multiprocessors,™ Technical report, Yale University, 1986.

[Li88] K. Li, “IVY: A Shared Virtual Memory System for Parallel Computing,” Proc. Int. Conf. Parallel Processing, pp.
94101, 1988.

[Lig9] K. Li and P. Hudak, “Memory Coherence in Shared-Memory Systems,” ACM Trans. Computer Systems,
pp- 321-359, Nov. 1989.

[Li91] K. Li and K. Petersen, “Evaluation of Memory System Extensions,” Proc. 18th Annu. Int. Symp. Computer Arch.,
Toronto, 1991.

{Li92] K. Li, “Scalability Issues of Shared Virtual Memory for Multiprocessors,” in Dubois and Thakkar (eds.), Scalable
Shared-Memory Multiprocessors, Kluwer Academic Publishers, Bosion, MA, 1992,

{Lilja88] D. J. Lilja, “Reducing the Branch Penalty in Pipelined Processors,” IEEE Computer, 21(7):47-55, 1988,

[Lilja92] D. J. Lilja, Architectural Alternatives for Exploiting Parallelism, \EEE Computer Society Press, Los Alamitos,
CA, 1992.

[Lin91a] X. Lin, P. K. McKinley, and L. M. Ni, “Performance Evaluation of Multicast Wormhole Routing in 2D-Mesh
Multicomputers,” Proc. Int. Conf. Parallel Processing, vol. 1, pp. 435-442, 1991,

[Lin91b] X. Lin and L. M. Ni, “Deadlock-Free Multicast Wormhole Routing in Multicomputer Networks,” Proc. 18th
Annu. Int. Symp. Computer Arch., pp. 116-125, 1991,

[Linder$1] D. H. Linder and J. C. Harden, “An Adaptive and Fault Tolerant Wormhole Routing Strategy for k-ary
n-Cubes,” JEEFE Trans. Computers, 40(1):2-12, Jan. 1991.

[Margulis90] N. Margulis, i860 Microprocessr Architecture, Intel Osborne/McGraw-Hill, Berkeley, CA, 1990

[Marson88] M. A. Marson, G. Balbo, and G. Conte Performace Modules of Multiprocessor Systems, MIT Press,
Cambridge, MA, Cambridge, MA, 1988.

[MasPar91] MasPar “The MasPar Family Data-Parallel Computer”, Technical summary MasPar Computer Corporation,
Sunnyvale, CA, 1991,

[Mirapuri92] S. Mirapuri, M. Woodacre, and N. Vasseghi, “The MIPS R4000 Processor,” IEEE Micro, 12(2):10-22,
Apr. 1992,

[Mowry91] T. Mowry and A. Gupta, “Tolerating Latency Through Sofiware-Controlled Prefetching in Shared-Memory
Multiprocessors,” J. Para. Distri. Computing 12:87-106, June 1991.

[Muchnick88] S. S. Muchnick, “Optimizing Compilers for SPARC,” Sun Technology, Summer:64-77, 1988.

[Mudge87] T. N. Mudge, J. P. Hayes, and D. D. Winsor, “Multiple Bus Architectures,” /EEE Computer, 20{6):42-49,
1987. ‘

[Nassi87] I. R. Nassi. “A Preliminary Report on the Ultramax: A Massively Parallel Shared-Memory Multiprocessor,”
Technical Report ETR 87-4, Encore Computer Corporation, Fort Lauderrdale, FL, 1987. Fort Lauderdale, FL, 1987.

{nCUBE90} nCUBE, nCUBE 6400 processor Manual, rCUBE Company, Beavrion, OR 97006, 1990.
[NEC90] NEC, “SX-X Series”, HNSX,” Technical report, Nippon Electric Company, Japan, 1990.
[NeXT90] NeXT Computer, Inc., Redwood City, CA, The Mach Operating System, Chapter 1,1990.

[Ni85a] L. M. Ni and K. Hwang, “Optimal Load Balancing in a Multiple Processor System with Many Job Classes,”
IEEE Trans. Software Engineering, pp. 491-496, May 1985.

3

700" M. Bibliography

[Ni85b] L. M. Ni and K. Hwang, “Vector Reduction Techniques for, Arithmetic Pipeline,” JEEE Trans. Computers, pp.
404411, May 1985.

[Ni91] L. M. Ni, “A Layered Classification of Parallel Computers,” Proc. 1991 Int. Conf. for Young Computer Scientists,
pp. 28-33, Beijing, China, May 1991.

[Nickolls90] J. R. Nickolls, “The Design of the MasPar MP-1: A Cost-Effective Massively Paraliel Computer,” in IEEE
Digest of Papers-Comcom, pp. 25-28, IEEE Computer Society Press, Los Alamitos, CA, 1950.

[Nicol88] D. M. Nicol and F. H. Willard, “Probiem Sise, Parallel Architecture, and Optimal Speedup,” J. Para. Distri.
Computing, 5:404-420, 1988,

[Nicolaus4] A Nicolau and J. A. Fisher, “Measuring the Paralielism Available for Very Long Instruction Word
Architectures,” IEEE Trans. Computers, 33(11):968-976, 1984.

[Nikhil89] R. S. Nikhil and Arvind, “Can Dataflow Subsume von Neumann Computing?,” Proc. 16th Annu. Int. Symp.
Computer Arch., pp- 262-272, 1989. '

[Nikhil92a] R. S. Nikhil, ““Tutorial Notes on Multithreaded Architectures,” Proc. 19th Annu. Inl. Symp. Computer Arch.,
1992, Contact DEC Cambridge Res,. Lab., 1 Kendall Square, Bldg. 700, Cambridge, MA 02139.

[Nikhil92b] R. 8. Nikhil and G. M. Papadopoulos, “*T: A Multithreaded Massively Parallel Architecture,” Proc. 19th
Annu. Int. Symp. Computer Arch., May 1992.

[Nitzberg91] B. Nitzberg and V. Lo, “Distributed Shared Memory: A Survey of Issues and Algorithms,” IEEE Computer,
24(8):52-60, 1991.

[Noakes90] M. Noakes and W. J. Dally, “System Design of the J-Machine,” in Dally (ed.), Proc. Sixth MIT Conf.
Advanced Research in VLSI, pp. 179-194, MIT Press, Cambridge, MA,1990.

[NS88] NS, N§32532 Performance Analysis: A Benchmark Study, National Semiconductor, 1988,

[NSF92] NSF, “Grand Challenge: High-Performance Computing and Communications,” Report, Committee on
Physical, Mathematical, and Engincering Sciences, U.S. Office of Science and Technology Policy, National Science
Foundation, Washington, DC, 1992.

[Nussbaum91] D. Nussbaum and A. Agarwal, “Scalability of Parallel Machines,” Commun. ACM, 34(3):57-61, 1991.
[OSF90] OSF, OSF/I Technical Seminar. Open Software Foundation, Inc., Cambridge, MA, 1990.

[Ousterhout88] J. K. Ousterhout, A. R. Cherenson, F. Douglis, M. N. Nelson, and B. B. Welch, “The Sprite Network
Operating System,” IEEE Computer, 21(2):23-36, 1988.

(Padua80] D. A. Padua, D. J. Kuck, and D. H. Lawrie, “High-Speed Multiprocessors and Compilation Techniques,” IEEE
Trans. Computers, pp. 763-776, Sept. 1980.

[Padua86] D. A. Padua and M. J. Wolfe, “Advanced Compiler Optimizations for Supercompuiers,” Commun. ACM,
pp- 1184-1201, Dec. 1986.

[Panda91] D. K. Panda and K. Hwang, “Fast Data Manipulation in Multiprocessors Using Parallel Pipelined Memories,”
J. Para. Dislri. Computing, 12:130-145, June 1991.

[Parasoft90] Parasoft , Express User 5 Guide Version 3.0, Parasoft Corporation, Pasadena, CA 90025, 1990.
[Parker91] K. Parker, “The Next Generation Furturebus+,” Fi uturebus+ Design, (1):12-28, Jan. 1991.
[Patel78] J. H. Patel, “Pipelines with Internal Buffers,” Proc. 5th Symp. Computer Arch., pp. 249-254, 1978.

[Patel81] J. H. Patel, “Performance of Processor-Memory Interconnections for Multiprocessors,” IEEE Trans. Computers,
pp. 771-780, Oct, 1981.

[Patel82] J. H. Patel, “Analysis of Multiprocessors with Private Caches,” IEEE Trans. Computers, C-31(4):296-304,
Apr. 1982

[Patterson82] D. Patterson and C. Sequin, “A VLSI RISC,” IEEE Computer, 15(9), 1982.

Bibliography . 70

[Perrott79] ‘R. H. Perrott, “A.Language for Array and Vector Processors,” ACM Trans. Prog. Lang. and Systems,
1(2%:177-195, Oct. 1979.

[Perrott87] R. H. Perrott, Parallel Programming, Addison-Wesley, Reading, MA, 1987,

[Pfister85a] G. F. Pfister, W. C. Brantley, D. A. George, S. L. Harvey, W. J. Kleinfelder, K. P. McAuliffe, E. A. Melton, V.
A Norlton, and J. Weiss, “The IBM Research Parallel Processor Prototype (RP3): Introduction and Architecture,”
Proc. Int. Conf. Parallel Processing, pp. 764-771, Aug. 1985,

{Pfister85b] G. F. Pfister and V. A. Norton, “Hot Spot Contention and Combining in Multistage Interconnection Networks,”
Proc. Int. Conf. Parallel Processing, pp. 790-797, Aug. 1985.

[Polychronopoulos89] C. D. Polychronopoulos, M. Girkar, M. R. Haghighat, C. L. Lee, B. Leung, and D. Schouten,
“Parafrase 2: An Environment for Parallelizing, Partitioning, Synchronizing Programs on Muitiprocessors,” Proc.
Int. Conf. Parallel Processing, pp. 765777, 1989.

{Pountain87] D. Pountain and D. May, 4 Tittorial Introduction to Occam Programming, McGraw-Hill, New York, 1987.

[Prasanna Kumar87] V. K. Prasanna Kumar and C. S. Ragbavendra, “Array Processor with Multiple Broadcasting,” J.
Fara. Distri. Computing, pp. 1202-1206, Apr. 1987.

[Preparata79] F. P. Preparata and J. E. Vuillemin, “The Cube-Connected Cycles: A Versatile Network for Parallel
Computation,” Proc. 20th Symp. Foundations Computer Sci., pp, 140147, 1979.

[Przybylski®0] S. Przybylski, Cache and Memory Hierarchy Design, Morgan Kaufmann, San Mateo, CA, 1990,
[PSRS0] PSR, MIMDizer User & Guide Version 7.01, Pacific Science Rescarch, Placerville, CA 90025, 1990.
[Quinn87] M. J. Quinn, Designing Efficient Algorithms for Parallel Commuters, McGraw-Hill, New York, 1987.

[Quinn90] M. J. Quinn and P. J. Hatcher, “Data-Paralle]l Programming on Multicomputers,” IEEE Software, 7(5):69-76,
Sept. 1990.

[Ragsdale$0] S. Ragsdale (ed.), Paralle! Programming Primer, Intel Scientific Computers, Beaverton, OR, 1990.

{Ramamoorthy77} C. V. Ramamoorthy and H. F. Li, “Pipeline Architecture,” ACM Computing Survey, pp. 61-102, Mar.
1977. .

[Rashid81] R. F. Rashid and G. G. Robertson, “Accent: A Communication-Oriented Network Operating System Kermel,”
Proc. 8th ACM Symp. Operating System. Principles, pp. 6475, Dec. 1981.

[Rashid86] R. F. Rashid, “From RIG to Accent to Mach: The Evolution of a Network Operating System,” Proc. Fall Joint
Computer Conf’, pp. 1128-1137, Dallas, TX, Nov. 1986.

[Rice85] J. R. Rice, “Problems to Test Parallel and Vector Languages,” Technical Report CSD-TR 516, Purdue University,
May 1985.

[Ritchie74] D. M. Ritchie and K. Thompson, “The UNIX Time-Sharing System,” Commun. ACM, 17(7):365-375, July
1974.

[Rothnie91] J. Rothnie, “KSR-1 Memory System,” Technical report, Kendall Square Research, Cambridge, MA, 1991,

[Russell87] C. H. Russell and P. J. Waterman, “Variations on UNIX for Parallel Processing Computers,” Commun. ACM,
30(12):1048-1055, Dec. 1987.

[Saavedra90] R. H. Saavedra, D. E. Culler, and T. von Eicken, “Analysis of Multithreaded Architectures for Parallel
Computing,” Proc. ACM Symp. Parallel Algorithms and Architecture, Greece, July 1990,

[Sakai91] 8. Sakai, Y. Kodama, and Y. Yamaguchi, “Prototype Implementation of a Highly Parallel Dataflow Machine
EM-4.” Proc. Int. Parallel Processing Symposium, 1991

[Sayanarayanan80] M. Sayanarayanan, “Commercial Multiprocessing Systems,” IEEE Computer, 13(5);75-96, 1980,

[Scheurich89] C. Scheurich, Access Ordering and Coherence in Shared-Memory Multiprocessors, Ph.D. thesis, University
of Southern California, 1989.

702" Wik Bibliography

[Schimmel90] C. Schimmel, “UNIX on Modern Architectures,” Proc. Summer 1990 USENIX Conf., Anaheim, CA, June
1990.

[Schwartz80] J. T. Schwartz, “Ulira-Computers,” 4 CM Trans. Prog. Lang. and Systems, 2(4):484-521,1980.

[SCSI84] Computer Business Equipment Manufacturers, Wash. DC, SCS/ Small Computer System Interface. ANSC X3,
1984,

[Seitz85] C. L. Seiiz, “The Cosmic Cube,” Commun. ACM. 28(1), 1985.

ISeitz88] C. L. Seitz, W. C. Athas, C. M. Flaig, A.]. Martin, J. Seizovic, C. S. Steele, and W. K. Su, “The Architecture
and Programming of the Ametek Series 2010 Multicomputer,” Proc. Conf. Hypercube Computers and Concurrent
Applications, pp. 33-36, pasadena, CA, Jan. 1983,

[Seitz89] C. L. Seitz, J. Seizovic, and W. K. Su, “The C-Programmer’s Guide to Multicomputer Programming,” Technical
Report CS-TR-88-1, California Institute of Technology, Pasadena, CA, 1989.

[Seitz90] C. L. Seitz, “Concurrent Architectures,” in Suaya and Birtwistle (eds.), VLSI and Parallel Computation,
Chapter 3, Morgan Kaufmann, San Mateo, CA, 1990.

[Seitz92] C. L. Seitz, “Mosaic C: An Experimental Fine-Grain Multicomputer,” Technical report, California Institute of
Technology, Pasadena, CA 91125, 1992

[Sevcik89] K. Sevcik, “Characterization of Parallelism in Applications and Their Use in Scheduling,” Proc. ACM
SIGMETRICS and Performance, May 1989.

[Shapiro86] E. Shapiro, “Concurrent Prolog,” [EEE Computer, 19(1).44--58, 1986.

[Shar72] L. E. Shar, “Design and Scheduling of Statistically Configured Pipelines,” Lab Report SU-SEL-72-042,
Stanford University, 1972.

[Sheperdsoné3] I. C. Sheperdson and H. E. Sturgis, “Computability of Recursive Functions,” J. ACM, 10:217-255, 1963.

[Shih89] Y. Shih and J. Fier, “Hypercube Systems and Key Applications,” in Hwang and DeGroot (eds.), Parallel
Processing for Supercomputing and Artificial Intelligence. pp. 203-244, McGraw-Hill, New York, i1989.

[Siegel79] H. 1. Siegel, “A Mode!l of SIMD Machines and a Comparison of Various Interconnection Networks,” IEEE
Trans. Computers, 28(12).907-917,1979.

[SiegelR9] H. J. Siegel, Interconnection Networks for Large-Scale Parallel Processing: Theory and Case Studies, 2nd
ed., McGraw-Hill, New York, 1989.

[Siewiorek91] D. P. Siewiorek and P. J. Koopman, The Architecture of Supercomputers, T1 TAN: 4 Case Study, Academic
Press, New York, 1991.

[Simmons92} M. L. Simmeons, H. J. Wasserman, O. M. Lubeck, C, Eoyang, R. Mendez, H. Harada, and M. Ishiguro, “A
Performance Comparison of Four Supercomputers,” Commun. ACM, 35(8):1 16-124, 1992,

[Sindhu92] P. S. Sindhu, J. M. Frajlong, and M. Cekleov, “Formal Specification of Memory Modules,” in Dubois and
Thakkar (eds.), Scalable Shared-Memory Multiprocessors, Kluwer Academic publishers, Boston, MA, 1992.

{Smith82] A. 1. Smith, “Cache Memories,” ACM Computing Survey, pp. 473-530, Sept. 1982,

[Smith85] B. Smith, “The Architecture of the HEP,” in Kowalik (ed.), Parallel MIMD Computation: HEP Supercomputer
and Applications, MIT Press, Cambridge, MA, 1985.

[Smith88] J. E. Smith, “Characterizing Computer Performance with a Single Number,” Commun. ACM, 31(10):
1202-1206, 1988.

[Smith89] J. E. Smith, “Dynamic Instruction Scheduting and The Astronautics ZS-1," [EEE Computer, 22(7):21-35,
1989.

[Smith90] J. E. Smith, W. C. Hsu, and C. Hsiung, “Future General-Purpose Supercomputer Architecture,” Proc. ACM
Supercomputing Conf. 1990, New York, Nov. 1990.

Bibliography - 703

[Snir82] M. Snir, “On Parallel Search,” Proc. Principles of Distributed Computing, pp. 242-253,1982.

[Sohi%0] G. S. Sohi, “Instruction Issue Logic for High-Performance, Interruptible, Multiple Functional Unit, Pipelined
Computers,” IEEE Trans. Computers, 39(3):349-359, March 1990,

[SPARC90] Sun Microsystems, SPARC Architecture Reference Manual VB, Dec. 1990,

{Stallings90] W. Stallings, Reduced Instruction Set Eomputers, 2nd ed., IEEE C omputer Society Press, l.os Alamitos,
CA, 1990.

[Stenstrém90] P. Stenstrém, “A Survey of Cache Coherence Schemes for Multiprocessors,” JEEE Computer, 23(6):
12-25, 1990.

[Stenstrdm92] P. Stenstrdm, T. Joe, and A. Gupta, “Comparative Performance Evaluation of Cache-Coherent NUMA and
COMA Architectures,” Proc. I%th Annu. Int. Symp. Computer drch., 1992,

[Stone71] H. 8. Stone, “Paralle! Processing with the Perfect Shuffle,” IEEE Trans. Computers, C20:153-161, 1971.
[Stone90] H. S. Stone, High-Performance Computer Architecture, Addison-Wesley. Reading, MA,1990.

[Sullivan77] H. Sullivan and T. R. Bashkow, “A Large Scale, Homogeneous, Fully Distributed Parallel Machine,” Proc.
4th Symp. Computer Arch., vol. 5, pp. 105-124, Mar. 1977.

[Sun91] X. H. Sun and D. T. Rover, “Scalability of Parallel Algorithm-Machine Combinations,” Technical Report IS-
5057, UC-32, Ames Laboratory, Iowa State University, Ames, lowa, 1991,

{Sun93] X. H. Sun and L. M. Ni, “Scalable Problems and Memory-Bound Speedup,” J. Para. Distri. Computing, 1993,
also appeared in Proc. ACM Supercomputing, 1990.

[SweazeyBI) P. Sweazey, “Cache Coherence on SCL,” JEEE Computer Architecture Workshop, Elilat, lsrael, May 1989,
[Tabak90] D. Tabak, Multiprocessors, Prentice-Hall, Englewood Cliffs, NJ, 1990.
{Tabak®1] D. Tabak, Advarced Microprocessors, McGraw-Hill, New York, 1991,

[Tanenbaum92] A. S. Tanenbaum, M. F. Kaashoek, and H. E. Bal, “Parallel Programming Using Shared Objects and
Broadcasting,” IEEE Computer, 25(8):10-20, 1992.

[Tevanian87] A. Tevanian, R. F. Rashid, M. W. Young, D. B.” Golub, D. L. Black, and E. Cooper, “Mach Threads and the
UNIX Kemel: The Battle for Control,” Proc. Summer 1987 USENIX Con/., pp. 185-197, Phoenix, AZ, June 1987.

[Tevanian89] A. Tevanian and B. Smith, “Mach’ The Model for Future UNIX,” Byte, 14(12):411-416, Nov. 1989.

[Thakkar90] S. 8. Thakkar, M. Dubois, A. T. Laundrie, G. S. Sohi, D. V. James, S. Gjessing, M. Thapar, B. Delagi,
M. Cariton, and A. Despain, “New Directions in Scalable Shared-Memory Multiprocessor,, Architectures”, JEEE
Computer, 23(6%:71-83, 1990.

[Thompson&0] S. D. Thompson A Complexity Theory for VLSI, Ph.D. thesis, Camegie-Mellon University, 1980.

[Thornton70] J. E. Thornton, Design of @ Computer: The CDC 5600, Soott and Foresman, Glenview, IL, 1970.

[TI33] Texas Instruments Inc., Dallas, TX, NuBus Specification, 1983.

[TMC90] TMC, The CM-2 Technical Summary, Thinking Machines Corporation, Cambridge, MA, 1990.

[TMCO1] TMC, The CM-35 Technical Summary, Thinking Machines Corporation, Cambridge, MA,1991.

{Tomasulo67] R. M. Tomasulo, An Efficient Algorithm for Exploiting Multiple Arithmetic Units,” IBM J. Res. and
Develop., 11(1):25-33, 1967.

[Treleaven85] P. C. Treleaven, “Control-Driven, Data-Driven, and Demand-Driven Computer Architecture,” Parallel
Computing, 2, 1985,

[Trew91] A. Trew and G. Wilson (eds.), Past, Present, Parallel: A Survey of Available Parallel Computer Systems,
Springer-Verlag, London, 1991,

[Tucker88] L. W. Tucker and G. G. Robertson, “Association and Applications of the Connection Machine”, [EEE
Computer, 21(8):26-38, 1988.

704 Wil Bibliography

[Ullman84] J. D. Ullman, Computational Aspects of VLSI, Computer, Science Press, Rockville, MD,1984.

[VITA90] VME Bus International Trade Association and IEEE P1014 Working Group, 64-Bit YMEbus Specification,
Edition D, Jan. 1990.

[Wah90] B, W. Wah and C. V. Ramamoorthy (eds.) , Computers for Artificial Intelligence Processing, Wiley, New York,
1990.

[Wall91] D. W. Wall, “Limits of Instruction-Level Parallelism,” Proc. Fourth Int. Conf. Arch. Support for Prog. Lang.
and OS, pp. 176-183, 1991.

[Wallace64] C. E. Wallace “A Suggestion for Fast Multiplier ,” IEEE Trans. Computers pp. 14-17, Feb. 1964.

[Waltz87] D. L. Waltz, “Applications of the Connection Machine. (New Computer Architecture form Thinking Machines
Corporation, JEEE Computer, 20(1):85-97,1987.

{Wang92] H. C. Wang, Parailelization of Iteraive PDE Solvers on Shared-Memory Multiprocessors, Ph.D. thesis,
University of Southern California, 1992.

[Wang93] H. C. Wang and K. Hwang, “Multicoloring Parallelization of Grid-Structured PDE Solvers”, Technical report,
University of Southern California, Los Angels, 1993,

[Weicker84] R. P. Weicker, “Dhrystone: A Synthetic Systems Programming Benchmark™, Commun. ACM, 27(10):
1013-1030, 1984,

[Weiser®5] W. Weiser et al., “Status and Performance of the Zmob Parallel Processing Systems,” Proc. COMPCON,
pp- 71-73, 1985.

[WeissB4] S. Weiss and J. E. Smith, “Instruction Issue Logic in Pipelined Supercomputers,” IEEE Trans. Computers,
pp- 1013-1022, 1984

[Wilson87] A. W. Wilson, “Hierarchical Cache/Bus Architecture for Shared-Memory Multiprocessors,” Proc. {4th Annu.
Int. Symp. Computer Arch., pp. 244-252, 1987.

[Wirth77] N. Wirth, “Modula: A Language for Modular Multiprogramming,” Software Practice and Experience, T.3-35,
Jan. 1977.

[Wolf91a] M. E. Wolf and M. S. Lam, “A Loop Transformation Theory and an Algorithm to Maximize Parallelism,”
IEEE Trans. Parallel Distri. Systems, 3(10):452—471, 1991.

[Wolf91b] M. E. Wolf and M. S. Lam, “A Data Locality Optimization Algorithm,” Proc. ACM SIGPLAN Conf. Prog.
Lang. Design and Implementation, pp. 3044, 1991.

[Wolfe82] M. J. Wolfe, Optimizing Supercompilers for Supercomputers, Ph.D. thesis, University of Iilinois, 1982.

[Wolfe89] M. J. Wolfe, “Automatic Vectorization, Data Dependence, and Optimizations for Parallel Computers,”
in Hwang and DeGroot (eds.), Parallel Processing for Supercomputing and Artificial Inteliigence, Chapter 11,
McGraw-Hill, New York, 1589.

[Worltou84] J. Worlton, “Understanding Supercomputer Benchmarks,” Automation, pp. 121-130, Sept. 1984.

[Wu80] C. L. Wu and T. Y. Feng, “On a Class of Multistage Interconnection Networks,” IEEE Trans. Computers,
pp. 696-702, Aug. 1980.

[Wulf72} W. A. Wulf and C. G. Bell, “C.mmp—A Multi-Miniprocessor,” Proc. Fall Joint Computer Conf., pp. 765-177,
1972.

[Xu89] Z. Xu and K. Hwang, “Molecule: A Language Construct for Layered Development of Parallel Programs,” [EEE
Trans. Computers, 38(5):587-599, 1989.

[Xu91} J. Xu and K. Hwang, “Mapping Rule-Based Systems onto Multicomputers using Simulated Annealing,” J. Para.
Distri. Computing, pp. 442-455, Dec. 1991.

[Yamaguchi91) Y. Yamaguchi, S. Sakai, and Y. Kodama, “Synchronization Mechanisms of a Highly Parallel Dataflow
Machine EM-4,” IEICE Trans., 74(1):204-213, 1991.

Bibliogrophy WS- 705

[Yew87] P. C. Yew, N. F. Tseng, and D. H. Lawrie, “Distributing Hot-Spot Addressing in Large-Scale Muttiprocessors,”
IEEE Trans. Computers, pp. 388-395, Apr. 1987.

[Yew91] P. C. Yew and B. W. Wah (eds.), Spcciai Issue on Shared-Memory Multiprocessors, J. Para. Distri. Computing,
June 199].

[Young87] M. W. Young, A. Tevanian, R. F. Rashid, D. B. Golub, J. Eppinger, J. Chew, W, Bolosky, I. L. Black, and
R. Baron, “The Duality of Memory and Communication in the Implementation of a Multiprocessor Operating
System,” Proc. 11th ACM Symp. Operating System Principles, pp. 63-76, 1987,

[Zima%0] H. Zima and B. Chapman, Supercompiler for Parallel and Vector Computers, Addison-Wesley, Reading, MA,
1990,

[Zorpettad2] G. Zorpetta, “The Power of Parallelism,” JEEE Spectrum, 29(9):28-33, 1992.

Index

1-Dring 431

2-D mesh 76, 431
2-D torus 76, 655
3-Dmesh 431

3-D torus 431, 658

A o | o

abacus 3

access time 160

acknowledge signal 227

Ada 539

Ada message passing 564

Ada name addressing 564
Adarendezvous 564

adaptive routing 328
add-and-multiply 149

address mapping 168

address translation cache 142
address translation mechanisms 169
addressing modes 138
air-traffic simulation 574
algebraic optimization 505
algorithms and data structures 7
alias analysis 600, 610, 621
Alliant FX 368

Alliant FX/2800 97, 296, 371
Alliant FX/80 20

allocation policies 210

ALU, arithmetic & logic unit 605
AMD 102 '

AMD 29000 143

AMD Opteron 655, 662
Amdahl’s law 94, 108, 350, 648
Ametek 5/14 313

Ametek Series 2010 315

AMT DAP 29,39, 101, 312

analytical modeling 202

animated graphics 633

anticipatory paging 213
anti-dependence (see WAR dependence)
arithmetic mean execution rate 92
arithmetic mean execution time 92
arithmetic mean performance 92
arithmetic pipeline stages 257

ARM processor 134

array control unit 389

array language extensions 480

ASIC, application specific integrated circuit 653
associative memory 197

asymmetric multiprocessor 18
asymptotic speedup 91,92, 118
asynchronous message passing 477, 565
asynchronous model 227

asynchronous pipelining 320
asynchronous protocol 190
asynchronous timing 186

atomic memeory accesses 216

atomic operation 309, 545, 668
atomicity 213, 216

attached processors 13

autotasking 550

available parallelism 91

average CPI 13

average latency 234

average parallelism 90

B

backplane bus 182, 283
backward compatibility 607, 663
barre] shifter 70

g

barrier synchronization 644, 658, 672

baseline network 79

basic block 91, 502, 591

basic block construction 503
basic block scheduling 502
Bayes, Thomas 615

BBN Butterfly 296, 312, 413
BBN TC2000 4, 21, 102
benchmark 97

Berkeley RISC 52, 143
Bernstein’s conditions 47
binary switch 78

binary tree 71,76

bisection width 67

block frames 195

block misses 165

block replacement policies 177
blocking flow control 325)
blocking network 287

board interface logic 184
branch handling techniques 250

branch prediction 252, 588, 593, 598, 615, 621

branch prediction unit 596
branch processor 153

branch target 250

branch target buffer 253, 617
Brent’s theorem 648

broadcall 185

broadcast 55, 68, 185, 670
buffer deadlock 323

buffered crossbar networks 378
bus addressing 184

bus arbiter 184, 636

bus arbitration 77, 183, 186, 288
bus cycle 184

bus master 183, 636

bus system 77,282

bus timer 184

bus-busy 187

bus-grant 187

bus-request 187

butterfly network 78, 292

Index

C

C.mmp mulitiprocessor 37, 81

C/S-access memory organization 347

C-access memory organization 345

cache addressing models 192

cache and memory hierarchy 13

cache blocks 195

cache coherence 191, 296, 476

cache design 138

cache design alternatives 308

cache design parameters 197

cache events and actions 302

cache flushing 308

cache hit 192

cache hit ratio 202

cache miss 192

cache performance issues 202

cache-based multiprocessors 190

cacheing, benefits 414 '

Caltech Mosaic C 431,442

CAM, content-addressable memory 197

categorized dependence tests 496

CCC, cube-connected cycles 73, 76

ceNUMA, cache-coherent non-uniform memory access
21, 659, 663 .

CDB, common data bus 248, 263, 596, 603, 611

CDC 1604 4

CDC 6600 4,243, 247, 263, 615

CDC 7600 39,263, 615

CDC Cyber 2000 365

CDC Cyber 205 39, 348, 371

CDC Cyberplus 431

Cedar multiprocessor 296

central arbitration 187

central memory multiprocessors 24

chained directories 304

chaining limitations 377

channel bandwidth 330

channel deadlock 323

Chapel paralle] programming language 650, 665

chip area 588

chordal ring 70

index

circuit switching 281
circular FIFO algorithm 175
circular wait 323, 557

CISC, complex instruction set computing 16, 133, 137,
663

C-Linda 540
clock cycle 229
clock rate 13, 117, 133
clock skewing 229
clock synchronization 190
clocked latches 228

. cluster computing 638

“cluster shared-memory 19
CM-2 29,39, 100, 120, 312, 434
CM-2 architecture 385
CM-5 102, 120,392
CM-5 network architecture 395
CM-5 software 542
CMU Plus 411 -
coarse-grain parallelism 54, 526, 649
coarse-grain partition 57
code compaction 518
code generation 514
code optimization 501
code parallelization 511
coherence property 161
coherence protocols 77
collision 233
collision vectors 235
collision-free scheduling 235
COMA, cache only memory access 20
combining networks 290 '
combining tree 440
commit unit 665
common data bus (see CDB)
common subexpression elimination 505
communication 105
communication latency 54, 314, 330, 434
communication overhead 117, 124
comparison of memory models 220
compatibility 538
compensation code 519
compilation phases 489

" 709

compiler directives 8, 544, 671

compiler support 8, 481

compiler technology 13

compiler-detected parallelism 598, 641, 649
complete graph 597

completely connected network 70, 76
complex instruction set computing (see CISC)
compound vector functions 372 '
computational granularity 105

computer architecture 585

computer arithmetic 255

computer cost 117

computer generations 4

computing capacity 90

concurrent OOP 481

concurrent COP - actor model 482
concurrent read 32

____—-concurrent write 32

condition variables 673

conditional probability 615

conditions of pdrallelism 44

connected transaction 189

Connection Machine CM-2 (see CM-2)
Connection Machine CM-5 (see CM-5)
constant folding 505

constant propagation 505

context switch 194

context-switching overhead 422
context-switching policies 428

control decomposition 570

‘control dependence 46, 592, 606

control flow 61

control mechanisms 138
control network 393, 396
control parallelism 51, 648
control processor 397
control-dependent iterations 46
control-flow optimization 507
convergence division 261
Convex C 368

Convex C3240 97

Convex C3800 family 26
Convex C3840 370

710" i,

cooperative problem solving 483
correlated predictor 617

Cosmic Cube 38, 313, 442

Cosmic kernel 563

cost per byte 160

COVI, concurrent outer/vector inner 512
CPA, carry-propagation adder 257
CPI, cycles per instruction 13, 133
CPU implementation and control 13
CPU throughput 14

CPU time 117

Cray 1 39,243

Cray 18, 28 348

Cray C-90 26

Cray computer systems 102, 654
Cray CX1 654

Cray Linux Environment 656

Cray multiprocessors - multitasking 548
Cray Research 665

Cray SeaStar interconnect 655

Cray T3D 361, 654

Cray T3E 654

Cray X-MP 4, 348, 654

Cray X-MP - macrotasking 551
Cray XMT 654

Cray XT 631, 654, 663

Cray XTS5, XT6 655

Cray Y-MP 26, 296, 348, 434, 654
Cray Y-MP 816 357

Cray Y-MP C90 97, 101, 348, 356, 359, 370

Cray Y-MP software 541
Cray Y-MP/8 97, 120
Cray, Seymour 654
Cray/MPP 39, 360, 431
CRCW-PRAM mode! 32
CREW-PRAM model 32
critical section 474, 672

crossbar network/switch 37, 77, 78, 81, 286

crossbar network/switch - limitations 288
crosspoint switch design 287
CSA, carry-save adder 257

CSP, communicating sequential processes 565

cube connection 78

CUDA, Compute Unified Device Architecture 652

current loop 636

cyberspace 634

cycle scheduling 516

cycle time 13

cycle width 621

cycles per instruction (see CPI)

Cypress CY7C601 SPARC processor 146 -

D

DAG, directed acyclic graph 514
daisy chained 187

damain and array slicing 669
data bus 283

data cache 138

data dependence 44, 268, 590, 606
data locality 651

data mirroring 634

data network 393, 396

data parallel model 479

data parallelism 51, 100, 480, 648, 651, 666, 673

data stream 651

data striping. ‘634

data structures 105

data tokens 62

data transfer bus 183

data-accept 185

dataflow computer 40, 62
dataflow computers - evolution 458
dataflow graph 63, 458
data-parallel applications 641, 642
data-ready 185

data-routing functions 67
deadlock avoidance 324, 559
DEC Alpha 102, 121, 134, 151
DEC PDP-11 212

DEC PDP-8 4

DEC VAX 121

DEC VAX 11/780 147

DEC VAX 8600 134, 139, 192
DEC VAX 9000 4, 26, 365, 366, 371
DEC VAX/VMS 272

“DEC, Digital Equipment Corporation 121

Index

Index

decentralized control 615

decode stage 240

degree of interleaving 207

degree of parallelism 89, 642, 644
Dekker’s protocol 554

delay insertion 238

delay slot 250

detayed branches 253

demand paging systems 212
demand-driven computation 635
dependence analysis 491
dependence between instructions 590
dependence equations 493
dependence graph 44, 591
dependence testing 491

design constraints 619

design issues 587

design space of processors 133, 620
design verification 598
development layers 11

Dhrystone 97, 98

diagnostic network 393, 397
difference engine 3
dimension-order routing 326, 438, 655
dining philosophers problem 578
direction vector 493
direct-mapping cache 195
directory structure 304
directory-based protocols 303
discrete transistors 4

display technology 632

distance vector 493

distributed arbitration 188
distributed cacheing 424
distributed computation 478
distributed control 394
distributed memory multicomputer 22, 24, 36, 122
distributed parallel arbitration 190
distributed shared memory 410
distributed-memory model 383
distribution 669

Doacross loops 532

domain decomposition 566

. 7))

domatins and sub-domains 666

DRAM, dynamic random access memory 631

DSB weak memory model 219

dynamic branch strategy 252

dynamic connection networks 67, 77

dynamic dataflow 460

dynamic instruction scheduling (see dynamic
scheduling)

dynamic pipeline 232

dynamic scheduling 247, 263, 595, 600, 604

E

eager evaluation 65

ease of use 538

E-cube routing 326

EEPROM, electrically erasable programmable ROM
634

effective access time 165, 208

effective bandwidth 182

effective pipeline throughput 251

efficiency 118, 229, 231, 538

efficient algorithm 647

electromechanical decimal computer 3

elimination of dead code 506

elimination of unary operators 506

embedded applications 134

Encore Multimax 284, 368

ENIAC 4

EPIC, explicitly parallel instruction computer 601

ERCW-PRAM model 32

EREW-PRAM model 32

ETA10E 348

ETL EM-4 460, 461

ETL EM-4 node architecture 461

ETL Sigma-1 460

event ordering 213

evolution of scalable computers 120

exclusive read 32

exclusive write 32

execute stage 240

execute unit 664

execution profile 617

€xecution trace 617

expected CP1 138

explicit dependence lookahead 457
explicit parallelism 16

explicit token store machines 460
exponent 255

Express 538, 540

expressiveness 538

F

factor algorithm - parallel 569
factor algorithm - sequential 568
fairness policies 546
fairness-based policy 188

Fast Fourier Transform 107, 581
Fastbus 189

fat tree 72, 395

fault tolerance 190, 208, 642
feedback connection 232
feed-forward connection 232
Fermi GPU 652

fetch & decode unit 664

fetch stage 240

fetch&add 294

Fibre Channel 655

fine-grain multicomputers 434
fine-grain parallelism 53, 434, 649
fine-grain partition 57

fine-grain wavefronting 524
finite precision 233
first-in-first-out (FIFO) algorithm 175
fixed-load model 104

fixed-load speedup 109
fixed-memory speedup 113
fixed-point operations 255
fixed-point unit 153

fixed-time model 104
fixed-time speedup 111

flash memory 634

flits (see flow control digits)
floating-point numbers 255
floating-point operations 256
floating-point operations per second 14
floating-point registers 263

floating-point unit (see FPU)

flow analysis 489

flow control digits (flits) 318

flow control strategies 324

flow dependence (see RAW dependence)
flushing 194

Flynn's classification 9

forbidden latencies 233

fork operation 672

form factor 633

Fortran 90 539

Fortran 90 array notation 487
FPGA, field programmable gate array 653
FPU, floating point unit 153, 605
Fuyitsu 82 ‘

Fujitsu AP1000 97

Fujitsu VP2000 356, 362

Fujitsu VP2600/10 348, 370
Fujitsu VPPS00 82, 102, 364

full map directories 304

fully associative cache 197
functional decomposition 570
functional parallelism 673
functional pipelines 157, 378
functional programming 484
functional units 263, 587, 594, 610
Futurebus+ 189

FX Fortran 539

G

gather instruction 343

gather operation 670
generalized multiprocessor 281
general-purpose registers 137
generation scalability 121
Gigabit Ethernet 637, 655
global allocation policy 211
global computation model 1315
global optimizations 506
global prediction 617

global registers’ 145

global shared memory model 191
globally shated memory 19, 191

index

index

global-view abstractions 666
Goodyear 101

Goodyear MPP 39

GPU computing 652

GPU, graphics processing unit 651
grain packing 53

grain size 52,434

grand challenges 99
granularity 52

greedy cycles 236
Gustafson’s law 111, 112

H

HA, high availability 638

hardware parallelism 49

hardware synchronization mechanisms 308

hardwired logic 137

harmonic mean execution rate 93

harmonic mean performance 92

harmonic mean speedup 93

Harvard Mark I 3

hazard avoidance 245

HEP system 40

heterogeneous processing 316, 573, 575

hidden bit 256

hierarchical bus systems 282

hierarchy optimization 166

high-order interleaving 206

histogramming 581

hit ratios 165

Hitachi 820/80 348

hold-and-wait 557

host computer 25

hot spot 75

hot-spot problem 254

hot-spot throughput 75

HP Spectrum 169

HP, high performance 638

HPC, high performance computing 351

HPCC, High-Performance Computing and
Communication 99.

HPCS, High Productivity Computing Systems 666

hybrid architecture 461

- 73

hybrid memory systems 213
hypercube 73, 76, 107
hypercube routers 387
hypercube routing functions 69
hypernets 88

HyperTransport 635, 655, 663

1

O bus 283

I/O demand 117

10 dependence 45

IBM 3, 101, 657, 666

IBM 3090 4, 97,350

IBM 360/370 4, 121, 263

IBM 360/91 247,262,610

IBM 390 134

IBM 701 4

IBM 7090 4

IBM 801 52,169,172

IBM Blue Gene 631, 658

IBM ES/9000 21, 365, 371

IBM PC/AT 371

IBM Power7 processor 657

IBM RISC/System 6000 50, 102

IBM RP3 102, 169, 296, 312, 413

IBM RS/6000 151

IBMRT 169,172

IBM System 38 169

{EEFE 754 Standard 255

Illac [V 39,72, 101

Illiac mesh 76

Ilinois Cedar project 37

ILP - limitations 613

ILP, instruction level parallelism 53, 100, 266, 501,
588, 640, 649

IMAGINE stream processor 652

implicit parallelism 16

inclusion property 161

independent requests and grants 187

indirect jump prediction 621

InfiniBand 191, 638, 655

in-order compietion 268

in-order issue 268

1|4“

input set 47

instruction buffer 594

instruction cache 138

instruction commit 588, 605, 608
instruction count 13

instruction decode 595

instruction encoding 607
instruction execution phases 240
instruction fetch 595

instruction issue 595, 606, 611
instruction issue degree 150
instruction issue latency 135, 266
instruction issue rate 135, 266
instruction level parallelism (see ILP)
instruction pipeline 135, 588
instruction pipeline cycle 135
instruction pipeline depth 588
instruction quene 605

instruction reordering 505
instruction scheduling 501, 595
instruction scheduling - dynamic 502
instruction scheduling - static 502
instruction sets 138

instruction window 618, 619
instructions - arithmetic and logic 604
instructions - comparison 604
instructions - data transfer 604
instructions - transfer of control 604
integrated circuits 4

integrated environment 537

Intel 630, 663

Intel 40486 663

Intel 8088 663

Intel 80x86 family 141

Intel i486 139, 141,172, 192

Intel i860 143, 148, 194

Intel 1960 S50, 151

Intel iPSC 73, 313, 314, 434

Intel Itanium 601

Intel Paragon 23, 38, 102, 120, 316, 431
Intel Paragon XP/S software 541
Intel Pentium 134, 141, 205, 664
Intel Touchstone Delta 97, 102, 120

Intel x86 133

Intel x86 instruction set 662

Intel Xeon 634

interconnect technology 635

internal data forwarding 244
interprocessor communication 399, 646

interprocessor communication network 281

interprocessor-memory network 281
interrupt 186

interrupt handling 77, 184

interrupt lines 184

interrupt mechanisms 189

interrupt messages 566

interstage connection 78

inverted paging 172

IPC complexity 123

IPC, interprocess communication 473
IPv6 191

ISA, instruction set architecture 13, 137, 607

isoefficiency 105
isoefficiency function 106
issue multiplicity 619
issue stage 240

iteration space 492
iterators 669

J

J-Machine 38, 316, 431, 434
J-Machine, communication support 437
J-Machine, MDP design 435

J-Machine, message format & routing 439
J-Machine, message-driven processor 434

J-Machine, router design 439
J-Machine, synchronization 440
join operation 668, 672

jump prediction 593,617

K
k-ary n-cube networks 74, 76, 88

KLIPS, kilo logic inferences per second 97, 99

KSR-1 38,70, 102, 424, 431, 448
KSR-1 ALLCACHE memory 450
KSR-1 architecture 448

index

Index

KSR-1 multi-ring searching 451
KSR-1 programming model 451
KSR-1 remote memory access 450

L

Lamport 217

language features for parallelism 485
Laplace 615

Laplace equation 122

latency 52, 124, 422

latency analysis 232, 321

latency hiding techniques 408, 632
layered decomposition 576

layered parallelism 573

lazy evaluation 653

feast frequently used (LFU) algorithm 175
least recently used (LRU) algorithm 175
lexicographic order 492

limited directories 304

Linda 538, 565

Linda - tuple space 565

line width 630

linear array 70, 76

linear pipeline 227

LINPACK matrix factorization 567
LINPACK results 370

list scheduling 516

load/store instruction set 589, 594
load/store operations 51

load/store unit 596, 664

local allocation policy 211

local area network 635

local buses 282

local computation model 115

local memories 19

local optimizations 505

local prediction 617

local register file 652

locale 669

locality of references 161, 163, 192
localization 526

localized iteration space 530

lock synchronization 546

— T8

locks for protected access 553

logic programming 484

logical design 598

logical network topology 671
lookahead 9

loop buffer 243

loop distribution 569

loop interchanging 509

loop optimizations 507

loop parallelization 520

loop transformation - permutation 3521
loop transformation - reversal 521
loop transformation - skewing 521
loop transformation theory 520

loop unrolling 598, 614, 621
loop-level parallelism 34

low-order interleaving 206

LVDS, low voltage differential signaling 636

M

machine granularity 121
machine-dependent optimizations 507
macrotasking 349

mainframes 3635

MAL. minimal average latency 235,237
manager-worker approach 571
Manchester Dataflow 460

mantissa 235

Maryland Zmob 431

masking instructions 343

MasPar MP-1 28, 29, 39, 101, 388
massively parallel processing (see MPP)
master threads 672

master-slave flip-flops 228

matrix multiplication 32, 35, 106
mean performance 92

mechanical adder/subtractor 3
mechanical computer 3
medium-grain parallelism 54
memory allocation schemes 210
memory bandwidth 208

memory banks 209

memory bus 282

716 Nk, Index

memory capacity planning 165 minisupercomputers 365

memory capacity/size 117, 160 MIPS processor 133, 205

memory consistency issues 214 MIPS R3000 193, 620

memory cycle 13 MIPS R4000 241, 243, 254

memory design implications 164 MIPS R4000 instruction pipeline 241

memory events 214 MIPS, millien instructions per second 14, 97

memory hierarchy 160 MIPS/0S 272

memory hit 168 MISD, multiple instruction-stream, single data-stteam 9

memory interleaving 205 mis-prediction penalty 621

memory latency 53, 55, 123, 458 MIT *T 102

memory management 210, 665 MIT Alewife 40, 169, 424, 431

memory model 214 MIT J-Machine (see J-Machine)

memory replacement policies 174 MIT tagged token architecture 460

memory requirement {05 MIT/Motorola *T 460, 463

memory swapping 210 MiT/Motorola *T architecture 463

memory-access pipelines 157 MIT/Motorola *T node design 463

memory-bound problems 112 MIT/Motorola Monsoon 460

memory-bounded speedup model 112 MMU, memory management unit 142, 192

memory-to-mernory architecture 27 monitor 559

MERRIMAC stream processor 652 monitor applications 562

mesh network 72, 107 monitor structure 559

mesh routing chip 315 Moore’s law 630

mesh-connected router 318 Mosaic C 315

message 191 Mosaic C, 8x8 mesh boards 442

message formats 319 Mosaic C, node 442

message passing 11, 123 Motorola 657

message routing 387 Motorola 68040 134, 139, 260

message types & parameters 563 Motorola 680x0 141

message-based protocol 637 Motorola 88100 143

message-passing 189,227 Motorola 88110 254, 271

message-passing mechanisms 318 MPIL, message passing interface 656, 670

message-passing model 477 MPP, massively parallei processing 6, 51, 99

message-passing multicomputer 10, 54 Multibus IT 189

message-passing network 22 multicache imconsistency 123

message-passing program development 562 multicast 55, 68, 191

Mtiops, million floating point operations per second 97 raulticast routing algorithm 329

microcoded logic 137 multicomputer 312

micro-operation buffer 664 multicomputer development 314

microtasking 550 multi-core chips 134, 588, 624, 630, 642

MIMD architecture 392 multidimensional architectures 431

MIMD, muttiple instruction-stream, multiple data- multifunctional arithmetic pipelines 263
stream 9, 24, 638, 649, 670 multi-level cache coherence 303

MIMDizer 538, 540 multt-level cache memories 204

tndex

multimedia applications 632
multipipeline networking 378
multiple-context processors 420, 426
multiple-issue processor 597
multiplexer 288

multiply pipeline 258

multiport memory 286, 289
multiprocessing 475

multiprocessing requirements 548
multiprocessor execution modes 547
multiprocessor operating system 37
multiprogramming 54, 475
multi-resolution design 666
multistage crossbar interconnect 391
multistage interconnection networks 37,77
multistage network 287, 290, 296
multitasking 54, 475

multitasking environments 548
multitasking tradeoffs 550
multithreaded architectures 124
multithreaded computations 422
multithreading 40, 421, 475, 597, 641, 649
multithreading, coarse-grain 624
multithreading, fine-grain 624
multithreading, simultaneous 624
multivector multiprocessors 352
muitiway shuffle 78

mutex variables 673

mutual exclusion 557

N

NaN, not-a-number 256 .
Nanobus 189, 284

nCUBE 73, 312

nCUBE/2 23, 38,97, 101, 315
NEC $X-3 97,370

NEC SX-X Series 356

NEC SX-X/44 343

nesting of parallel constructs 672
network characteristics 281
network diameter 67

network embedding 88
network on a chip 635

- 717

network partitioning 333
network performance 6%
network properties 67
network size 67

network stages 286

network technology 635
network throughput 75
NEWS grid 387

node degree 67

node duplication 58

node splitting S10

nonatomic memory accesses 216
nonblocking network 287
non-cacheable data 308
nonlinear pipeline 232
non-pipetined processors 229
non-preemption 357
normalization 261

N-queens problem 571, 580
NS 32532 141

Nubus 189

NUMA computer clusters 191
NUMA muitiprocessor 19
numerical integration 642
Nvidia 652

NYU Ultracomputer project 37

0

object decomposition 573
object-oriented model 481

objects and paralletism 573

Occam 565

Omega network 79, 291

OMP, orthogonal multiprocessor 431, 433
OMP, processor cache 433

OMP, snooping cache 433

OpenMP 650, 656, 671

operand forwarding 597, 598, 602, 606
operating system 7

operation code 611

operation latency 136, 621

optimal (OPT) algorithm 1735

optimal number of stages 230

71g

optimal parallel algorithm 647

optimistic synchronization 546
optimization in basic blocks 501
optimizing compilers for parallelism 488
optimum block size 203

oracle-driven trace-based simulation 620
OSF/1 273

out-of-order completion 268

out-of-order execution 604, 662, 664
out-ol-order issue 268§

output dependence (sce WAW dependence)
output set 47

overhead of instruction level parallelism 619
overlapped register windows 145

P

P and V operators 557

packet collision resolution 325
packet switching 67, 191, 281
page faults 165

page migration 123

page swapping 410

page trace 174

paged memory 171

paged segments 171

paging 169

Parafrase 490

paraltel code generation 490
parallct disk arrays 392

parallel environment 16
parallel low control 487
parallel language constructs 487
parallel languages 484, 539
parallel prefix 399, 403

parallel programming cnvironments 537
parallel programming models 473
parallel schedule 58

parallel threads 663

parallelism profile 90, 103
parallelism relation 44
parallelization 49, 523
parallelization inhibitors 513
parallelizing compiler 8, 539

parity calculation 119

Parsys Supernode1000 23
Parsytec FT-400 97

partial order 591

PCI Express 636

PCl, peripheral component interconnect 636
PE array 390

PE clusters 390

peak performance 12

perfect shuffle 68, 78
performance 12

performance bottleneck 586, 605
performance factors 13
performance measure 97
performance tuning 544, 569, 572
performance/cost ratio 230
permutation 55, 68, 399

personal computer 141

PFC, Parallel Fortran Converter 491
physical address caches 192
physical address space 167
physical design 598

physical network topolegy 671
pipeling chaining 374

pipeline cycle 135, 266

pipeline design parameters 266
pipeline efficiency 239

pipeline flush 589, 590, 602
pipeline hazard 5%0

pipeline net 378

pipeline schedule optimization 237
pipeline stall 268, 602, 623
pipeline throughput 239
pipelined memory access 207
pipelining 9

pipelining in VLIW processors 155
pipelining of loop iterations 531
pixel density 632, 663
point-to-point links 191, 637
polynomial complexity 30
portability 538

{ndex

POSIX, portable operating system interface for UNIX

673

Index

Power architecture 154

power consumption 588, 619, 633
Power series 133, 205

PowerPC architecture 657
PRAM, parallel random-access machine 30, 31
precedence constraints 502
precompiler 8, 539

predicated instructions 601
prefetch buffer 243, 263
prefetching techniques 412
prefetching, benchmark results 412
prefetching, benefits 412
preprocessor 8, 539

Princeton IAS 4

Princeton Shiva 411

priority interrupts 189

priority levels 190

priority-based policy 138

P-RISC 460

private virtual memory 168
problem granularity 121

problem scalability 121

problem scaling 122

problem size 117

problems of asynchrony 423
process migration 297

processing array 386

processing kemel 651

processing nodes 386, 398
processor clock rate 588, 619
processor consistency 418
processor design 585

processor efficiency 426, 428
processor efficiency, linear region 430
processor efficiency, saturation region 429
processor elements 391

processor family 203

processor /O network 281
processor performance 585
processor state 595, 597, 605
processor utilization 123
processor-memory bus 586
producer-consumer problem 560

- 719

program counter 61

program flow mechanisms 61
program graph 55, 378:

program graph transformations 380
program loop 614

program optimization 439
program order 605

program partitioning 52, 476
program replication 476

program state 595, 597, 605
programmability 124
programming environments 16
programming languages 11
programming overhead 117
promotion 668

protected access 474

PThreads 673

PVM, Parallel Virtual Machine 673

Q
Qo8, Quality of Service 638
quality of parallelism 95

R

radix 255

RAID, redundani array of independent disks 634

random replacement 173

random-access machine 30

RAW, read after write dependence 45, 590, 602, 609,
612

read-modify-write 545

ready signal 227

reduced instruction set computing (see RISC)

reduction 399, 646, 668, 672

reduction machine 63

redundancy 95, 642

refresh rate 632

register allocation 517

register file 138

register renaming 591, 596, 599, 607, 610

register windows 143

register-tagging 247, 263 .

register-to-register architecture 26

.

relative MIPS 98

relative vector/scalar performance 350
relaxed memory consistency 418
release consistency 418

remote direct memory access 191
remote memory 19

rendering pipeline 633

reorder buffer 151, 596, 598, 605
replication 399

reservation 232

reservation stations 151, 244, 263, 596, 610, 664

reservation table 228, 232

resource conflicts 136

resource dependence 46, 593, 596, 607
response time 91

ring network 70, 76

RISC impacts 150

RISC, reduced instruction set computing 16, 133, 137

660
1ole of compilers 52
rotation 68
routing 67
routing efficiency 330
routing network 62
RPC, remote procedure call 565

S

S-access memory organization 346
scalability 116, 355, 393
scalability metrics 116

scalable cache coherence protocols 124
scalable computer 102

scalable computing 395

scalar processor 136

scalar RISC 143

scaled matrix multiplication 115
scaled problems 102, i11

scaling for higher accuracy 111
scatter instruction 343

Schedule 538, 540

scheduling 52, 476

SCI - scalable coherent interface 191, 415

SCI cache coherence protocol 416

SC1 sharing list creation 417
SCI sharing list structures 416
SCI sharing list updates 417
scoreboard 40, 248, 615

SCSI, Small Computer Systems Interface 283

sector mapping cache 200
segmentation 169

segmented memory 171
semaphores 556

semaphores - binary 556
semaphores - counting 556
semiconductor technology 630
Sequent multiprocessor 284
Sequent Symmetry 21, 368
sequential bottleneck 110
sequential consistency 214,217, 419
sequential environment 16
sequential locality 164

server farms 634

server synchronization 547
set-associative cache 198
shared caches 308

shared media interconnect 635
shared memory model 384

shared memory multiprocessor 10, 17, 36, 586

shared resource allocation 557

shared variable communication 54, 473
shared variable model 473

shared variable program structures 552
shared variables 11

shared virtual memory 124, 168, 408
shifting 68

SHMEM 656

shuffie 68

Silicon Graphics 193, 368

SIMD architecture 382

SIMD instructions 384

Index

SIMD, single instruction stream, multiple data stream

9,24, 27
simple cycles 236
simple operation latency 266
simulation 598
single-stage network 286

Index

SISD, single instruction stream, single data stream 9

size scalability 121

slave 183

slave threads 672

slotted token ring 431

snooping logic 143

snoapy protocols 298

software parallelism 50

software pipelining 531, 677

software portability 124

software scalability 124

software tools 537

sole-access protocols 546

solid state drives 634

solid-state storage 348

source tag 611

space complexity 30

SPARC implementations 145

SPARC processor 133,219

spatial locality 164

SPEC92 620

special function units 143

speculative execution 596, 618, 621, 662

speedup 118,229

speedup versus stream length 230

spin locks 553

split cache 153

split transaction 189

SPMD, single program, multiple data-stream 638, 648,
670 '

SSE, streaming SIMD extension 633, 662

stage utilization 239

Stanford Dash 38, 169, 408, 411, 424, 431

Stanford Dash - architecture 444

Stanford Dash - benchmark results 414

Stanford Dash - cache coherence 447

Stanford Dash - directory protocol 446

Stanford Dash - memory hierarchy 446

Stanford Dash - mesh interconnect 445

Stanford MIPS 52

star network 71, 76

Stardent 3000 368

Stardent 3040 37!

state diagram 235, 616

static arithmetic pipelines 257
static branch strategy 252

static dataflow 460

static networks 67

static scheduling 247, 595, 600
storage density 633

storage dependence 47

storage technology 633
store-and-forward routing 319
stream processing 66, 633, 648, 651, 670
stream processor 630

streamline connections 232
strength reduction 507

string reduction 65

strip-mining 374

structural parallelism 588, 640, 649
subscript categories 494

subscript partitioning 494

subscript separability 494
subtract-and-multiply 149

Sun Microsystems 219, 392, 660, 666
Sun SPARC 143, 205, 660

SUN SPARCstation 2,371

Sun UltraSparc T2 processor 660
superscalar performance 271
superscalar pipeline design 266
superscalar pipeline scheduling 268
superscalar processor 52, 134, 150, 587
suspend locks 553

SVM (see shared virtual memory)
swap device 211

swapper 212

swapping systems 211

switch module 78

switched interconnect 191
switched media interconnect 635
symbolic processing 158

symbolic processors 157
Symbolics 3600 159

symmetric multiprocessor 18
synchronization 63, 105, 476, 545, 673
synchronization environment 547

. 72|

722wl

synchronization latency 53
synchronization overhead 123, 434, 458
synchronized protocol 190
synchronous message passing 477, 564
synchronous model 228

synchronous program graph 380
synchronous timing 185

system area network 635

system attributes 13

system clock driver 184

system deadlock 557

system efficiency 95

system interconnect 17, 281

system performance 585

system software support 7

system throughput 14
system-on-a-chip 351, 624, 630, 660
systolic arrays 10, 72

systolic program graph 380

T

tag unit 244

tagged-token architecture 62
Tandem multiprocessor 82

target buffers 243

task parallelism 668

temporal locality 164

Tera computer system 40, 102, 169
Tera design goals 452

Tera multiprocessor 452

Tera pipeline structure 455

Tera sparse 3-D torus 453

Tera thread state & management 456
test&set 555

thread context 623

thread management 673
thread-level parallelism 623, 661
three-address instruction format 589
throughput 229, 231

TI-ASC 4, 263

TI-ASC arithmetic processor 264
tightly coupled systems 17
TILE64 system-on-a-chip 659

Tilera 658

Tilera iMesh interconnect 659
tiling 526

tiling for locality 528

time complexity 30, 55
timing protocols 185

TLB, translation lookaside buffer 140, 169, 192

TMC CM-2 (see CM-2)
TMC CM-5 (see CM-5)

TMC, Thinking Machines gorporation 120, 392

token-matching 62

Tomasulo’s algorithm 248, 263, 610
torus network 72

tournament predictor 617

trace scheduling compilation 518
trace-driven simulation 202
transaction 186, 191, 636
transaction modes 189
transaction processing 77, 641
transactions per second 99
transfer bandwidth 160
transformation matrices 522
transistor count 588

Transputer 77,315, 565

traveling salesperson problem 580
TSO weak consistency model 219
tumaround time 12

two-bit predictor 616

U

UMA multiprocessor 17
unit of transfer 160
Univac LARC 4

UNIX 195,212

UNIX BSD 4.0 212
UNIX System V 212
unknown dependence 45
USC/OMP 431

user partitions 393
utilization 95

v

vacuum tubes 4

Index

vector 341

vector access memory schemes 345
vector add 373

vector balance point 352

vector instructions 156, 341
vector load 372

vector loops and chaining 374
vector memory instructions 343
vector multiply 372

vector operand specifications 345
vector pipelines 157

vector processing 341

vector processor/computer 10, 11, 25, 156, 341

vector recurrence 377

vector reduction 343, 510
vector store 373

vector supercomputers 134
vector units 398

vector/scalar ratio 352
vectorization 49, 341
vectorization inhibitors 511
vectorization methods 508
vectorizing compiler 54
vector-scalar instructions 343
vector-vector instructions 342
very large scale integration (see VLSI)
viewing angle 632

virtual address cache 193
virtual address space 167
virtual channels 322

virtual computing environments 642
virtual cut-through 325, 655
virtual interrupt 189

virtual memory 167

virtual networks 332

virtual processing ¢lement 673
virtual systems 661
visualization support 544
VLIW architecture 154

VLIW, very long instruction word 134, 601

VLSI complexity model 33

W 723

VLSI design 598

VLSI technology 587, 630

VILSI, very large scale integration 4
VME bus 182, 189

W

wait protocols 545

WAR, write after read dependence 45, 590, 609, 612
wavefronting 523

WAW, write after write dependence 45, 590, 608
weak consistency 124, 218, 419

weighted arithmetic mean execution rate 92
weighted arithmetic mean execution time 93
weightcd' harmonic mean execution rate 93
weighted harmonic mean speedup 93
Whetstone 97

wide area network 635

window size 213, 621

wire length 67

wired barrier synchronization 309
Wisconsin Multicube 431

work performed 90, 646

work-efficient 647

working set 165,213

workload 105

wormhole routing 314, 320

write buffers 409

write-back cache 192, 300

writeback stage 240

. write-invalidate protocol 299

writezence protocel 301
write-through cache 192, 299
write-update protocol 299

X

Xerox 637

X-Net mesh interconnect 391
X-Y routing 326

Y
Yale Linda 411

;pf' rlgﬂ v ./5

-6

- e

